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Workbook overview  
 
The first part of this workbook starts with the simple concept of percentage numbers and applies the 
rules to various business and financial calculations, such as calculating profit, VAT, discounts, etc. 
 
The middle section of the first part is dedicated to ratios and proportions. This is then applied to some 
business calculations, such as foreign exchange calculations, etc. 
 
The last and the largest section of the first part of the basic maths, recaps various basic algebra rules to 
handle different types of numbers, their squares and roots, as well as how to handle the brackets. From 
there, we progress to most elementary equations and how to handle them. 
 
The second part of the workbook is dedicated to more advanced maths, but it almost exclusively uses 
Excel as a primary tool to explain the concepts. The second part starts with the concept of summations 
and continues with a brief refresher in various more advanced topics in mathematics. The first section 
of the second part proceeds with the concept of product, factorial and binomial coefficients. This is 

followed by brief overview of  and e, i.e. the two “magic” numbers that seems to be present 

everywhere. After the complex numbers were introduced, a relationship between , e, and i is also 
covered. 
 
The middle section of the second part also provides a refresher in logarithms and shows how they, 
together with e, can be used for some practical calculations, such as the compound interest. 
 
This is followed by a brief refresher in some of the most fundamental concepts from trigonometry and 
calculus. 
 
The final section of part 2 provides a high level, but quite advanced refresher in matrix algebra. We 
cover vectors, matrices, eigenvectors, eigenvalues and all the operations related to these concepts.  
 

Learning objectives  
 
On successful completion of the module, you will be able to: 
 

• Calculate percentages and convert other numbers into percentages 

• Calculate a range of financial measures, including profit and loss, discounts, value added tax, 
simple and compound interest 

• Calculate ratios and proportions 

• Understand the application of simple equations to model relationships: concept of a model, 
basic algebra, square and square roots, indices, standard form, simple equations, formulae. 

• Plot and fit a straight-line graph to model a relationship 

• Calculate sums, products and factorials of numbers 

• Understand binomial coefficient 

• Have appreciation for the use of   and e 

• Understand logarithms 

• Learn how to read and handle complex numbers 

• Have appreciation of the relationship between  , e and i 

• Understand vector operations 

• Understand the application of simple trigonometry concepts 

• Understand the concept of integrals and derivatives from calculus  
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• Understand and be able to handle basic matrix operations 

• Understand the use of eigenvalues and eigenvectors 
 

Introduction 
 
We’ve made a simple assumption that readers have acquired a certain amount of elementary 
mathematical proficiency to be able to follow the textbook without any difficulty. However, often this 
is not the case. Either the proficiency is lost and forgotten, or in fact, it has never been acquired. This is 
reality. If this is the case, a reader might be severely handicapped to follow the textbook. 
 
To address these potential shortcomings, we decided to put a chapter together that will offer a 
refresher to most basic maths skills. As we proceeded with this task, we realised that some more 
ambitious students might like to go to the next level, so we added a more advanced refresher to the 
first part.  
 
The first part of the chapter provides simple set of exercises to remind readers on some of the basic 
rules of arithmetic and algebra. Even if users rely very much on software tools, such as Excel, they often 
need to create formulae to execute certain operations. Without knowing the basic mathematical rules, 
these formulae might be wrongly constructed, which will return incorrect results. 
 
The readers that have no need to recap their knowledge of basic mathematical operations can 
comfortably skip this part of the chapter. However, if some more advanced mathematical refresher is 
still necessary, the readers should proceed with the second part of the chapter dedicated to a more 
advanced maths refresher. 
 
The second part of the chapter starts with the concept of summations and continues with a brief 
refresher in various topics in mathematics. From logarithms, binomial coefficients, factorials, complex 
numbers, matrix algebra to elementary trigonometry and ultimately vectors, matrices and eigen values.  
 
Most of the concepts covered in this chapter are not necessary to understand the majority of this 
textbook. However, they represent a general mathematical foundation that will become useful if a 
student wishes to go beyond the basic material. 
 
All the topics presented in this chapter are very brief and very practical. They just offer a refresher in 
the mechanics of calculations and no deeper understanding is offered. It is meant to be very practical 
to help students understand some terminology or operations that is used in certain areas of statistics. 
 
More advanced concepts are explained in a conventional way, and then accompanied by a solution in 
Excel. Often Excel offers very quick and elegant solutions, but the result still needs to be understood. 
This is the reason why conventional method always precedes the Excel solution. 
 

Why is this relevant to me? 
 
The concepts introduced in this chapter will be essential to have a clear understanding of the material 
covered in the textbook. This is the fundamental reason why we put this chapter together and this is 
why we consider it relevant 
 
The second part is not relevant for this textbook, but it is relevant for anyone who would like to explore 
more advanced concepts in statistics and go beyond this textbook. In order to do this, some more 
complex ideas from mathematics will be necessary, which is the reason why we put the second part of 
the chapter together.  
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The last point of relevance we would like to emphasis is the use of Excel as one of the most ubiquitous 
platforms in business, administration, science and industry. Excel is “packed” with numerous 
mathematical functions that hardly ever get used. This chapter will also enable readers to get a better 
understanding of what is available in Excel and how to apply it in the context of more advanced 
mathematical skills. 
 

Part 1 Basic maths skills 
 

1.1 Percentages 
 

Percentage (written %) means ‘out of one hundred’ e.g. 12% means ‘twelve out of a hundred’ or 
12

100
. 

50% means ‘50 out of a hundred’ or 
50

100
. Fractions and decimals can easily be changed into 

percentages and vice-versa. 
 

Changing fractions to percentages 
 

To change a fraction into a percentage, multiply the fraction by 
100

1
 . 

 

Example 1.1.1 Convert  
3

5
  to a percentage  

 

 
3

5
=  

3

5
 ×  

100

1
 =

300

5
= 60% 

 
The answer is 60% (said 'sixty per cent'). Remember to use your rules of fractions, and to cancel 
where possible. 
 

Example 1.1.2 Convert 1
2

5
  to a Percentage. First change the mixed number to an improper fraction, 

then multiply by 100. 
 

1
2

5
=  

(5 ×1)+2

5
=  

7

5
 × 

100

1
=

700

5
= 140%  

 
Student Exercise X1.1.1: 
 
Change these fractions to percentages: 
 

1. 
4

5
 2.  

1

3
    3.  

3

4
       4.  

2

7
         5.  1

1

5
 

 

Changing decimals to percentages 
 

To change a decimal to a percentage, multiply the decimal by 100. 
 
Example 1.1.3 Change 0.82 to a percentage = 0.82 x 100 = 82% 
Example 1.1.4 Change 0.175 to a percentage = 0.175 x 100 = 17.5% 
Example 1.1.5 Change 0.7 to a percentage 0.7 = 0.70 x 100 = 70% (Remember that 0.7 can be written 
as 0.70). 
Example 1.1.6 Change 1.67 to a percentage = 1.67 x 100 = 167% 
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Student Exercise X1.1.2: 
 
Change these decimals to percentages: 
 

1.  0.65 2.   0.375        3.   0.89     4.   0.6        5.   2.34 
 

Changing percentages to fractions 
 
To change a percentage to a fraction, divide by 100. 
 
Example 1.1.7 Change 75% to a fraction 
 

75 % = 
75

100
=  

3

4
 

 

Example 1.1.8 Change 12
1

2
 % to a fraction. 

 
First change the mixed number to an improper fraction.  
 

12
1

2
% =

12
1

2

100
=

12
1

2
×2

100×2
=

25

200
=

1

8
  

 
Example 1.1.9 Change 120% to a fraction 
 

120% =
120

100
=

6

5
  

 
Student Exercise X1.1.3: 
 
Convert these percentages to fractions: 
 
1.  25%  2.  30%  3.  140%  4.  33 1/3 % 5.  37 1/2 % 
 

Changing percentages to decimals (decimal fractions) 
 
To change a percentage to a decimal (decimal fraction), divide the percentage by 100.  
 
Example 1.1.10 Change 54% to a decimal 
 

54% =
54

100
= 0.54  

 
Example 1.1.11 Change 2.3% to a decimal fraction 
 

2.3% =
2.3

100
= 0.023  

 
Example 1.1.12 Change 32.73% to a decimal fraction 
 

32.73% =
32.73

100
= 0.3273  

 
Student Exercise X1.1.4: 
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Convert these percentages to decimals: 
 

1.  63%  2.   4.7%  3.   51.65% 
 

Percentage change 
 
A number can be increased or decreased by a given percentage, e.g. shoes in a sale, may be 
decreased (or reduced) by 10%, you may have to pay a deposit of 20% if you are buying a video. 
 
Example 1.1.13 What is 20% of £50? 
 
Remember that ‘of’ means multiply. 20% means 20 divided by 100, therefore 20% of £50 is now 
written 
 

20% of £50 =
20

100
×

£50

1
= £10 or  

20×50

100
= £10 

 
Example 1.1.14 What is 12 1/2 % of £160? 
 

12
1

2
% of £160 =

12
1

2

100
×

£160

1
= £20 

 
Student Exercise X1.1.5: 
 
Solve the following percentage problems: 
 
1. 10% of 150  2. 30% o £70  3. 5% of 300 
4. 12% of 30  5. 12.5% of 240 
 

Increasing a number by a given percentage 
 
There are several methods which can be used, two of which are shown here. 
 
Example 1.1.15 Increase £50 by 6% 
 
If we find 6% of £50, this gives the actual amount of the increase.  This increase must then be added 
to the original £50 to give the final price. 
 

Increase = 6% of £50 = 
6

100
×

£50

1
= £3 

 
The increase of £3 must now be added to £50.  
 
New Value = Old Value + Increase = £50 + £3 = £53 
 

The alternative is to multiply 50 by 1.06 = 50  1.06 = £53. As 6% is 0.06, we add this to 1 to 
get 1.06 that serves as the multiplier to calculate the percentage increase. 

 

Decreasing a number by a given percentage 
 
Using the same figures as in the example above, we know that 6% of £50 is £3. However, because we 
are looking for a decrease, the £3 must be subtracted from £50, giving the answer of £47. 
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The same alternative as above, is to multiply 50 with 0.94 = 50  0.94 = £47. As before, 6% is 0.06, we 
subtract this from 1 to get 0.94 that serves as the multiplier to calculate the percentage decrease.  
 
Student Exercise X1.1.6: 
 
1. Increase £200 by 4%  2. Decrease £200 by 4% 
3. Increase £420 by 10%  4. Decrease £420 by 10% 
 

Making a number a percentage of another number 
 
Example 1.1.16 What percentage is 43 out of 86? This is written as 
 

43

86
×

100

1
=

43×100

86
 = 50% 

 
Example 1.1.17 What percentage is 50 out of 150? This is written as 
 

5

150
×

100

1
=

1

3
×

100

1
=

100

3
= 33

1

3
%  

 
Student Exercise X1.1.7: 
 
What percentage is? 
 
1. 12 out of 48  2. £30 out of £150  3. £200 out of £700 
4. 0.5 out of 2.5  5. 1000 out of 8000 
 

1.2 Ratio and Proportion 
 

Ratio 
 
A ratio gives us a way of comparing two or more quantities. However, two or more quantities can only 
be compared when they are in the same units. 
 
Example 1.2.18 Find the ratio of 2 cm to 6 cm.  
 

First check that the units are the same (in this example they are in centimetres), then write 
down the numbers as shown below. 

 
2 : 6   (No need to write the units) 
2 : 6  =  1: 3  (Numbers cancelled by 2) 

 

This is said ‘one to three’ and can be written as a fraction 
1

3
 . It tells us that one measurement 

is 3 times greater than the other (i.e. 6cms is 3 times greater than 2 cm). 
 
Example 1.2.19 Express the ratio 75p to £1 in its simplest form.  
 

First change everything to pence. Ratio becomes 75:100 and can be cancelled down to 3:4. 
Therefore, the number is 3:4. Said ‘in the ratio of three to four’ and can be written as a 

fraction 
3

4
. 
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Example 1.2.20 Express 4 ∶  
1

3
  in its lowest terms.  

 
These terms must be in the same units - we cannot have mixed numbers and fractions. So, 
multiply one-third by 3 to make it into a whole number = 1. Of course, the 4 has also to be 
multiplied by 3 giving 12 (This is in the rules of fractions if you need to revise it!). So, we now 

have 4 ∶  
1

3
 = 12 : 1. 

 
Student Exercise X1.2.8: 
 
1. Express the following ratios in their lowest terms: 

(a)  2 : 4     (b)  8 : 12    (c)  60 : 150     (d) 18 : 15 (e)  4 : 1/2 
2. Express the ratio £5 to 75p in its lowest terms. 
3. Express the ratio 400 m to 2 km as a fraction in its lowest terms. 
 

Dividing an amount into proportional parts 
 
Example 1.2.21 Divide £500 into two parts in the ratio 2: 3. 
 

1. Find the total number of parts 2 : 3 =  2 + 3  =  5 parts. 
2. The total number of parts is equal to the total amount of money 5 parts = £500. 
3. To find 1 part, divide the total amount of money by the total number of parts 

1 part =  
£500

5
 = £100 

 
4. To find the value of 2 and 3 parts, multiply 1 part by 2, and then multiply 1 part by 3. 
 

2 parts = £100 x 2 = £200 and 3 parts = £100 x 3 = £300 
 

To check, add 2 and 3 parts together (£200 + £300 = £500). 
 
The required ratio is £200: £300 

 
Example 1.2.22 A line 30 cm long is to be divided into 3 parts in the ratio 2:3:5. Find the length of the 
LONGEST part. 

 
2: 3: 5 = 10parts 

 
10 parts = 30 cm 

 

cm3
10

cm30
part1 ==  

 
The longest part = 5 parts 

 
Therefore, 5 parts = 5 x 3cm = 15cm 

 
The longest part is 15 cm. 
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Example 1.2.23 Two amounts of money are in the ratio 4:3. If the first amount is £24, what is the 
second amount? This time we are told that the first amount of money is £24; we are not given the 
total. 
 

4 parts = £24 
 

1 part = £6 
 

Therefore, 3 parts = £6 x 3 = £18 
 
Student Exercise X1.2.9: 
 
1. Divide £300 in the ratio of 2:1. 
2. Divide £60 in the ratio 5:7 
3. A line is divided into 3 parts 2:3:7. If the line is 84 cm long calculate the length of each part? 
4. A sum of money is divided in the ratio of 2:3. If the larger amount is £18, what is (i) the other 

amount and (ii) the total sum of money? 
5. £600 is divided amongst three children in the ratio of their ages. John 5 years old, Claire is 7 

years old and Robert is 8 years old.  How much money does Claire receive? 
 

Direct proportion 
 
If two quantities increase or decrease at the same rate, they are said to vary in direct proportion to 
one another, which means that if 2 ice-lollies cost 24p, then we would know that 4 ice-lollies would 
cost 48p, 6 would cost 72p and 1 would cost 12p. 
 

Double the amount - double the cost 
Treble the amount - treble the cost 
Half the amount - half the cost 

 
Example 1.2.24 If 3 kg of apples cost £1.20, how much will 5 kg cost? 

 
If 3 kg = £1.20 

 

1 kg = 
£1.20

3
  = £0.40 (or 40p) 

 
So, 5 kg will cost = 5 x 40p = 200p = £2. 

 
Example 1.2.25 A car travels 100 km in 2 hours.  How long will it take to travel 250 km? 

 
100 km in 2 hours 

 

1 km = 
2

100
  hours = 

1

50
 hours 

 

250 km = 250 ×
1

50
 hours = 5 hours 

 
Therefore, for 250 km, it would take 5 hours. 

 
Student Exercise X1.2.10: 
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1. 7 pears cost 84p. What is the cost of 5 pears? 
2. 5 kg of potatoes cost 40p.  What is the cost of 8 kg? 
3. A train travels 300 km in 5 hours. How long will it take to complete a journey of 450 km? 
4. Three metres of wood costs £2.25. What is the cost of 7 m? 
5. Two bottles of wine fill 8 wine glasses (big glasses!). How many glasses of wine can be poured 

from 5 bottles? 
 

Foreign currency and exchange 
 
A rate of exchange exists to convert one 
currency to another currency. For 
example, on the 15/4/2008 the exchange 
rates were as follows for the £, $, and €. 

£ $ € 

1 1.3981 1.1427 

Table 1.4.1 Rate of Exchange 23/4/2018 
Source: BBC – Business – Market Data web site 

 
The direct proportion method can be used to solve many foreign exchange questions. 
 

Example 1.2.26 Consider the problem of converting £2500 into Euros? 
We note that the conversion 
rate is £1 = €1.2428.  
 
Therefore, by direct 

proportion £2500 = 2500  £1 

= 2500  €1.427 = €2856.75.  
Figure 1.4.1 shows how easy it would be to use Excel to 
solve this problem. 

 
Example 1.2.27 Consider the problem of converting $1500 into €’s?  

We note that the 
conversion rate is 
$1.3981 = €1.1427. 
Therefore, by direct 
proportion $1 = 
€1.1427/$1.3981. 
 

$1500 = 1500  $1 = 

1500  1.1427/1.3981 = 
€1227. 

 
Figure 1.4.2 shows how easy it would be to use Excel to solve this 
problem. 

 
Student Exercise X1.2.11: 
 
Using the conversion rates for the £, $, and €, calculate:  
 
1. A man takes £200 to France. How many Euros does he receive in return? 
2. A businessman spends 600 euro’s on travelling in France. How much does he spend in £'s. 
 

Inverse proportion 
 
If an increase in one quantity produces a decrease in another, then this is said to be a case of inverse 
proportion. 
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Example 1.2.28 If 10 men take 8 days to build a wall, how long will it take 4 men to do the 
same job? 
 

10 men take 8 days 
 

1 man takes 10 x 8 = 80 days 
 

So, 4 men take 
80

4
  days = 20 days 

 
Example 1.2.29 15 women can pack 2000 articles into boxes in 3 days, how long will it take 10 
women to pack the same quantity? Here, the details about how many articles there were is 
not relevant. 
 

15 women take 3 days 
 

1 woman takes 3 x 15 = 45 days 
 

10 women take = 
45

10
 days = 4.5 days 

 
Student Exercise X1.2.12: 
 
1. 4 men can decorate a house in 3 days. How long does it take 2 men? 
2. An amount of money is divided amongst 8 children. Each child receives £9.  If the same 

amount of money was divided amongst 12 children, how much would each child receive? 
3. 20 men produce 1000 articles in 5 days. How long would it take 25 men to produce the same 

number of articles? 
 

1.3 Basic Algebra 
 

Directed numbers 
 
This unit is about positive and negative numbers. 
 
Positive numbers 
 
These, you know very well.  They are numbers such as: 
 

• 3 which can be written as +3 

• 46 which can be written as +46 

• 14.67 which can be written as +14.67 

• a which can be written as +a 
 
Any number or letter, which is written without a sign, is a positive number. Positive numbers may 
contain a plus sign, but it is common to see them with no sign at all. 
 
Negative numbers 
 
These are numbers (and letters) which have a minus sign in front of them: 
 

• Minus 3 is written -3 
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• Minus 46 is written -46 

• Minus 14.67 is written -14.67 

• Minus a is written -a 
 
A negative number, or letter, always has a minus sign in front of it. 
 
 
Adding and subtracting directed numbers 
 
As you can see all numbers have a direction - positive and negative terms is best shown, at this stage, 
by using a number line and doing addition and subtraction along the number line. 
 

 
Figure 1.3.1 Number line 

 
The number line is infinitely long, because the set of positive and negative numbers has no end. The 
line drawn above is just a short part of the number line. 
 
Addition using the number line 
 
Example 1.3.30 If you start on 0 and add 3, you move 3 places to the right, answer is +3. 
 
Example 1.3.31 Start at +1 and add 3.  Your answer is +4. 
 
Example 1.3.32 Start at -1 and add 3.  Your answer is +2. 
 
Example 1.3.33 
 

Start at -2 and add 3.  Your answer is +1. When you add, you move to the right along the 
number line. What do you think happens when you subtract a number? Yes! you move to the 
left along the number line when you subtract. 

 
Subtraction 
 
Example 1.3.34 Start at 0 and subtract 1.  Your answer is -1. 
 
Example 1.3.35 Start at 0 and subtract 2.  Your answer is -2. 
 
Example 1.3.36 Start at -1 and subtract 2.  Your answer is -3. 
 
Example 1.3.37 Start at +1 and subtract 2.  Your answer is -1 

 
Draw a number line which goes from -20 through 0 up to +20. Make sure the distance 
between each point is the same (one unit). Try the examples shown above, then some of your 
own to prove that it really works! 
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Multiplication and division of directed numbers 
 
Multiplication rules 
 

Positive multiplied by positive = + 
 

(+) * (+)  =  + 
 

Negative multiplied by negative = + 
 

(-) * (-)  =  + 
 

Positive multiplied by negative = - 
 

(+) * (-)  =  - 
 

Negative multiplied by positive = - 
 

(-) * (+)  =  - 
 
Example 1.3.38 
 

(+3) x (+4) = +12  (-3) x (-4) = +12 
(+3) x (-4) = -12   (-3) x (+4) = -12 

 

Remember (+3)2 and (-3)2 both equal +9. Written out fully (+3)(+3) = + 9 and (-3)  (-3) = +9. 
Remember ( )( ) means times, (+10)2 and (-10)2 = 100. Written out fully, (+10) (+10) = 100 and 
(-10) (-10) = 100. 

 
Student Exercise X1.3.13: 
 
1. (+3) + (+9)  2. (+10) + (-5)  3. (-1 5) + (+2) 
4. (-20) + (-20)  5. (+13) - (+10)  6. (+24) - (-12) 
7. (-21 ) - (+21 )  8. (-21 ) - (-21 )  9. (+12) + (-12) -  (-12) 
10. (+100) - (-50) + (+20) 
 
Remember when you see a bracket everything inside the bracket is multiplied by the number or letter 
with the sign which is outside the bracket. 
 
Division 
 

Positive divided by positive = + 
 

+10

+5
= +2 

 
Negative divided by negative = + 

 
−10

−5
= +2  

 
Positive divided by negative = - 
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+10

−5
= −2 

 
Negative divided by positive = - 

 
−10

+5
= −2  

 
Summary of rules: 
 
1. When multiplying or dividing like signs, the answer will be positive. 
2. When multiplying or dividing unlike signs, the answer will be negative. 
3. Multiply or divide numbers as normal. 
 
Student Exercise X1.3.14: 
 

1. 3  4  2. -3  -4  3. (-10)(-4) 4. (+3)2 
5. (-4)2  6. (-12)(+3) 7. +15   +5 8. -15   -5  
9. +15   -5 10. +1000   -10 11. +12   -6 12. -36   +6  
13. +24   -6 14. +16   -3 15. +14   -3 16. -125   -5 
 

Basic algebra 
 
In algebra, letters are used as well as numbers. Making algebraic expressions is really like making up 
sentences and is quite straightforward once you have learned the rules. If you are asked to make up 
an algebraic expression you may choose which letter(s) you wish. Look at these examples where you 
are asked to write down the sentences in algebraic forms. 
 
Example 1.3.39 Five times a number. 
 

Let the number be d 
 

Five times d = 5d 
 

5  d can be written as 5d or 5d 
 
The more common way is 5d. 
 

Example 1.3.40 Three more than a number 
 

Let the number be a 
 
Three more than a = a + 3 or 3 + a 
 
(Whichever way round, the answer is the same.) 

 
Example 1.3.41 Seven less than a number 
 

Let the number be g 
 
Seven less than g = g - 7 

 



Page | 17  
 

Example 1.3.42 The sum of two numbers 
 

Let the numbers be j and k 
 

The sum of j and k = j + k 
 
Example 1.3.43 A number multiplied by itself 
 

Let the number be c 
 

c multiplied by itself = c x c = c2 
 
Example 1.3.44 Half the number 
 

Let the number be s 
 

Half of 𝑠 =
𝑠

2
 

 
Example 1.3.45 The product of two numbers 
 

(Product means multiply) 
 

Let the numbers be y and z 
 

The product of y and z = yz or zy 
 
Example 1.3.46 One number divided by three times another number 
 

Let one number be m and the other number is n 
 

One number divided by three times the other = 
𝑚

3𝑛
  

 
Student Exercise X1.3.15: 
 
Write down the following as algebraic expressions: 
 
1. Four times a number? 
2. A quarter of a number? 
3. Eight less than a number? 
4. Six more than a number? 
5. The sum of three numbers? 
6. Three times the product of two numbers? 
7. Six times a number, plus five times a second number? 
8. Four times a number, minus another number? 
 
 

Substitution 
 
When a letter is replaced by a number in an expression this is called substitution.  
 
Example 1.3.47 In the following 9 examples a = 2, b = 3, c = 4. 
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1. 5a means 5 x a = 5 x 2 = 10 
2. b + c = 3 + 4 = 7 
3. c  -  a = 4  -  2 = 2 
4. 5b + 12a  = 5(3)  +  12(2) = 15  +  24 = 39 
5. ab  = 2 x 3 = 6 
6. abc  =  2 x 3 x 4  =  24 
7. bc  =  3 x 4  =  12 
8. 6 - c  =  6 - 4  =  2 
9. 3ac  =  3 x 2 x 4  =  24 
 
Student Exercise X1.3.16: 
 
If a = 1, b = 2, c = 3, d = 4, e = 5 
 
Find the values of: 
 
1. 3 + b  2. 2a  3. c + d      4.       e – c  5.      2c + 3d 
6. 4a - 2b  7. bc  8. de + d      9.    abcd               10. de/b 
 
What is different about a3 and 3a? If you are in any doubt about an expression write it out in full. So a3 

= a  a  a and 3a = 3  a. These, as you know, will give different answers if the value of 'a' is known. If 

a = 2, then a3 = 2  2  2 = 8 but 3a = 3  a = 3 x 2 = 6. 
 
Example 1.3.48 If a = 2, b = 3 and c = 5, find the values of the following. 
 

1. a4  =  a  a  a  a  =  2  2  2  2  =  16 

2. b2  = b  b  =  3  3  =  9 

3. b3  =  b  b  b  =  3  3  3  =  27 

4. ac2  =  a  c  c  =  2  5  5  =  50 

5. 3c  =  3  c  =  3  5  =  15 

6. 4a  =  4  a  =  4  2  =  8 

7. 2b2  =  2  b  b  =  2  3  3 = 18 

8. 
5𝑎2

𝑐
=

5×2×2

5
 = 4 

9. 2c2 + 2b3  =  2  5  5 + 2  3  3  3  =  50 + 54  =  104 
 
Student Exercise X1.3.17: 
 
If p = 2, q = 3, r = 4, s = 5 
 
Find the values of: 
 
1. q2  2. r3  3. 2S2   4. qp2 
5. 3p2 + r3  6. 2s2 + p3  7. 2q2 + 3p2  8. rs2 

9. 
2𝑞2

𝑟
  10. 

𝑠2

𝑝
  

 

Substitution with positive and negative numbers 
 
Example 1.3.49 If a = 1, b = - 2, c = 3, d = - 4, e = 5 
 



Page | 19  
 

1. a + b  =  1 + (-2)  =  1 – 2 = - 1 
2. a - b  =  1 - (-2) =  1 + 2 = 3 
3. b2 + 2e  =  (-2)(-2)  +  2(5)  =  4  +  10  =  14 

4. ed2  =  5 (-4)(-4)  =  5  (16) = 80 

5. (ed)2  =  (5  (-4))2  =  (- 20)2  =  400 
 
Student Exercise X1.3.18: 
 
X = -1, y = 2, z = 3 
 
1. 2x + 3y  2. xyz 3) x2y 4. x + y + z2 5. (2x + y)2 
 

Addition and subtraction of algebraic terms 
 
You can only add or subtract algebraic terms if they have the same letter(s) e.g. b's can only be added 
to b's, k's can only be added to k's, fg's can only be added to fg's, g2's can only be added to g2's. 
 
Example 1.3.50 Consider the problem 3a + 2a =? Think of it as adding 3 apples to 2 apples. Your 
answer would be 5 apples - in other words only the numbers are added. Therefore, 3a+2a = 5a. 
 
Example 1.3.51 
 

1. 6a - 2a  =  4a 
2. 8a - 6a + 7a  =  2a + 7a  =  9a 
3. 2xy + 6xy  =  8xy (remember that  yx  is the same as  xy) 
4. 3ab - ab  =  2ab (ab is really 1ab) 
5. 12xy  +  5xy  -  6xy  =  17xy  -  6xy  =  11 xy 
6. a + b  =  a + b 
7. 3a + 2b - a + 3b  =  3a - a  +  2b + 3b  =  2a + 5b 
8. a2  +  2a2  +  3a  =  3a2  +  3a 

 
If there is no sign in front of the letter this is, as you know, assumed to be positive. 

 
Student Exercise 1.3.19: 
 
1. 4a + 10a  2. 11a - 6a   3. 6xy + 2xy 
4. 6a - 2a + 3a  5. 11b + 2b - 7b  6. 3a + 2b - a 
7. 8b - 6a- 2b - 7a  8. 3b2 + 2b + 5b2  9. 6s2t + 3s2t 
10. 2b2 + 3b + 6b2 + 4b 
 

Multiplication and division of algebraic fractions 
 
The same rules apply as for directed numbers. Read through the following examples to clarify the 
rules. 
 

x times y  =  xy 
5x times 3y =  15xy 

 
Multiply the numbers together and then the algebraic terms. 
 

Example 1.3.52  a times a  =  a  a  =  a2 
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Example 1.3.53  4b times 3b times 5b  =  4  3  5  b  b  b  =  60 b3 

Example 1.3.54  2y  5z  =  2  5  y  z  =  10 yz 

Example 1.3.55  a  (-b)  =   - ab 

Example 1.3.56  (-2a)  (5b)  =  - 10 ab 

Example 1.3.57  (2a)  (-5b)  =  - 10 ab 

Example 1.3.58  (-2a)  (-5b)  =  10 ab 

Example 1.3.59  3a2  2a = 3  a  a  2  a  =  6a3 

Example 1.3.60  
4𝑎

2𝑏
=

2𝑎

𝑏
  

Example 1.3.61  
3𝑥

4𝑦
=

3𝑥

4𝑦
 (no change) 

Example 1.3.62  
4𝑎3

2𝑎
=

4×𝑎×𝑎×𝑎

2×𝑎
= 2𝑎2   

Example 1.3.63  
12𝑎3𝑏𝑐2

4𝑎2𝑐
=

12×𝑎×𝑎×𝑎×𝑏×𝑐×𝑐 

4×𝑎×𝑎×𝑐
= 3𝑎𝑏𝑐                   

 
Student Exercise X1.3.20: 
 
1. 2a * 3a   2. 2a * 3b   3. 4 * 6a 
4. (- 2a) * (6a)  5. (2s) * (-6t)  6. (-2s) * (-6t) 
7. 4a2 * 2a2  8. 3b2 * 2a2  9. (- a) * (- b) 

10. 
12𝑎2

3𝑎
   11. 

4𝑎2𝑏

2𝑎𝑏2   12.  
8𝑎2𝑏2𝑐2

2𝑎𝑏𝑐
    

13.   
(−𝑎)

𝑏
   14.  

(−6𝑥)

(−2𝑥𝑦)
   15.  

9𝑎2𝑏𝑐

27𝑎2𝑏𝑐
   

 

Brackets 
 
Brackets are used in mathematics as a type of shorthand.  When removing the brackets everything 
inside the brackets is multiplied by the expression outside the bracket. 
 
Example 1.3.64 2(a + b) = 2a + 2b 
Example 1.3.65 3(f + g) = 3f + 3g 
Example 1.3.66 a(j + k)  =  aj + ak 
Example 1.3.67 2(a- b) = +2a  -  2b 
Example 1.3.68 4(3a - 2b) = 12a - 8b 
Example 1.3.69 3a(5b - 6x)  =  15ab- 18ax 
Example 1.3.70 2x(3 + 2x)  =  6x + 4x2 
 
Look at this example - 2x(3 + x) means that+3 and +x must both be multiplied by -2x. Write it like this 

(- 2x)  (3) + (- 2x)  (x)  =  - 6x  -  2x2. 
 
Rule 
 
When a bracket has a minus sign in front of it, the signs inside the bracket are changed when the 
bracket is removed. Look at the following examples: 
 
Example 1.3.71  - 2(3 + 6a)  =  - 6 - 12a 
Example 1.3.72  - 3(4 - 3b)  =  -12  +  9b 
Example 1.3.73  - (a - b)  =  - a + b 
Example 1.3.74  - (a + b)  =  - a - b 
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In Example 1.3.73 and Example 1.3.74 there was only a minus sign in front of the bracket, but 
really this is a short way of saying that -1 is in front of the bracket. This is a very important 
point to remember. 

 
Student Exercise X1.3.21: 
 
1 2(x + 3)  2. 4(a + b)  3. 6(a- b)  4. 5(x - 3)   
5. 3(4x + 2y) 6. - (m + n) 7. - 2(3x + 5) 8. - 3(4 - 6x)  
9. - (2p + 3q) 10. 4b(3a- b) 
 

Removing brackets and simplifying 
 
In this type of question, you have to multiply out the brackets first and then collect all the 'like' terms 
together. 
 
Example 1.3.75 
 

2(X + 6) + 3(X + 5) = 2  X + 2  6 + 3  X + 3  5 
2(X + 6) + 3(X + 5) = 2X + 12 + 3X + 15 
2(X + 6) + 3(X + 5) = 5X +27 

 
Example 1.3.76 
 

2(X + 3) + (X - 2) = 2  X + 2  3 + 1  X – 1  2 
2(X + 3) + (X - 2) = 2X + 6 + X - 2 
2(X + 3) + (X - 2) = 3X + 4 

 
Example 1.3.77 
 

X(3X + 4) - 2(X2 - X) = X3X + 4X - 2X2 -2(-X) 
X(3X + 4) - 2(X2 - X) = 3X2 + 4X -2X2 + 2X 
X(3X + 4) - 2(X2 - X) = X2  +  6X 

 
Example 1.3.78 
 

3(a - b) - (2a - b) + 4(a - 2b) = 3a -3b - 2a + b + 4a - 8b 
3(a - b) - (2a - b) + 4(a - 2b) = 3a - 2a + 4a - 3b + b - 8b 
3(a - b) - (2a - b) + 4(a - 2b) = a + 4a - 2b - 8b 
3(a - b) - (2a - b) + 4(a - 2b) = 5a - 10b 

 
Student Exercise X1.3.22: 
 
1. 2(x + 2) + 3(x + 4) 2. 3(x - 6) - 2(x - 4)  3. x(2x + 1) - 4(x2 + 1)  
4. 4(a - b) - 2(a + b) + 6(a + b) 5. 4x(x + 6) - 2(x2 - 3) + 5(x2 + x + 2) 
 

Squares 
 
The square of a number is that number multiplied by itself. 
 

Example 1.3.79 ‘three squared’ is written 32 which means 3  3 = 9 and ‘four squared' is written 42 

which means 4  4 = 16. 
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Example 1.3.80  502 = 50  50 = 2500 

Example 1.3.81  (0.3)2 = 0.3  0.3 = 0.09 

Example 1.3.82  (0.03)2 = 0.03  0.03 = 0.0009 
 

Square roots 
 

The sign  means ‘the square root of’, and you must find a number which when multiplied by itself 

gives the answer in the sign. 
 

Example 1.3.83  √16 = √4 × 4 = 4 

Example 1.3.84  √25 = √5 × 5 = 5 

Example 1.3.85  √100 = √10 × 10 = 10 

Example 1.3.86  √10000 = √100 × 100 = 100 

Example 1.3.87  √0.25 = √
25

100
=

√25

√100
=

5

10
=

1

2
= 0.5 

Example 1.3.88  √0.0009 = √
9

10000
=

√9

√10000
=

3

100
= 0.03 

Example 1.3.89   √0.16 = √
16

100
=

√16

√100
=

4

10
=

2

5
= 0.4 

Example 1.3.90  √0.0016 = √
16

10000
=

√16

√10000
=

4

100
= 0.04 

 
In Excel square root function is called =SQRT(). Example 1.5.90 in Excel is as follows: 
 

 
 

Indices 
 
The index is the power of the base. If we show 23, then 2 is the base and 3 is the index. 23 is said 'two 

to the power three' or 'two cubed' and means 2  2  2 = 8. Equally, 32 is said 'three to the power two' 

or 'three squared' and means 3  3 = 9 '. Now look at these examples with indices (plural of index!) 
 

Example 1.3.91  104 is said 'ten to the power 4' means 10  10  10  10 = 10000 

Example 1.3.92  53 is said '5 cubed' means 5  5  5 = 125 

Example 1.3.93  a4 is said 'a to the power 4' means a  a  a  a 

Example 1.3.94  g6 is said 'g to the power 6' means g  g  g  g  g  g 

Example 1.3.95  Z7 is said 'z to the power 7' means z  z  z  z  z  z  z. 
Remember X1 = X and X0 = 1. 

 
In excel, powers are calculated as either =x^y or using the function =POWER(x,y). Example 1.5.92 is 
calculated as: 
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The following examples illustrate the rules which apply to indices.  
 

Multiplying numbers or letters with powers 
 
Example 1.3.96 
 

 23  22 = 2  2  2  2  2 = 32 
 

Note: This can be written as 23  22 = 25 
 

A quick way of doing this is to add the powers when you are multiplying numbers 
with powers. 

 
Example 1.3.97 
 

 a6    a3  =  a6+3  =  a9 
 
Example 1.3.98 
 

 b6    b  =  b6+1  =  b7.  

 

Note: b1 is the same as b. 
 

Example 1.3.99 3k2  4k 
 

Written out fully, this is  3k2  4k = 3  k  k  4  k = 12  k  k  k = 12k3 
 

Division of numbers or letters with powers 
 
Example 1.3.100 
 

23

22 =
21×21×21

21×21   

 
Now cancel, which gives 2' which is the same as 2. A quick way to divide letters or 
numbers with powers is to subtract the powers. 

 
23

22 =
21×21×21

21×21 = 23−2 = 21 = 2  

 
Example 1.3.101 
 

𝑎6

𝑎3 =
𝑎1×𝑎1×𝑎1×𝑎1×𝑎1×𝑎1

𝑎1×𝑎1×𝑎1 = 𝑎6−3 = 𝑎3  

 
Example 1.3.102 
 

𝑏4

𝑏
=

𝑏1×𝑏1×𝑏1×𝑏1

𝑏1 = 𝑏4−1 = 𝑏3  

 
Remember b1, is the same as b. 

 
Example 1.3.103 
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12𝑠2

4𝑠
=

12×𝑠1×𝑠1

4×𝑠1 =
12

4
𝑠2−1 = 3𝑠  

 

Brackets 
 

Example 1.3.104 (a2)3 =  a2  a2  a2 =  a2 + 2 + 2 = a6. A quick way of doing this is to multiply the power 
inside bracket by the power outside the bracket a2*3 = a6. You get the same answer, but the latter 
method is quicker! 
 
Example 1.3.105 (b4)5 = b4*5 = b20 
Example 1.3.106 (2b3)2 = (2b3) * (2b3) = 4b3+3 = 4b6 

Example 1.3.107 (42b1)2 = (42b1)  (42b1) = 42  42  b1  b1 = 256 b2 

Example 1.3.108 2(a3)4 = 2 a34 = 2 a12 
 

Negative indices 
 
Example 1.3.109 
 

9-1 means 
1

91  or  
1

9
. 

 

 9-1 can be written as 
1

9
 and is known as the reciprocal of nine. When you see a 

negative power think 'one over'. 
 
Example 1.3.110 
 

10−1 =
1

101 =
1

10
 
  

Example 1.3.111 
 

𝑎−1 =
1

𝑎1 =
1

𝑎
 
  

Example 1.3.112 
 

𝑎−4 =
1

𝑎4 
  

Example 1.3.113 
 

4𝑑−1 =
4

1

1

𝑑
=

4

𝑑
 
  

Example 1.3.114 
 

4𝑑−3 =
4

1

1

𝑑3 =
4

𝑑3 
  

In these examples the minus sign only applies to the letter d not to the number 4. 
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Fractional indices 
 
Example 1.3.115 
 

16
1

2 = √161 = 4. This means the 'square root' of 16, is, which number multiplied by 
itself gives 16 - answer is 4. When you see fractional indices think 'root sign'. 

 
Example 1.3.116 
 

8
1

3 = √313
= √8

3
= 2. This means the 'cube root’ of 8, is, which number multiplied by 

itself three times gives 8. 
 

To calculate the nth root of a number in Excel, use function =num^1/root. Example 1.3.116 is 
executed as: 
 

 
 
Example 1.3.117 
 

32
1

5 = √3215
= √32

5
= 2. This means the 'fifth root' of 32, is, which number 

multiplied by itself five times gives 32. 
 
Example 1.3.118 
 

81
1

4 = √8114
= √81

4
= 3. This means the 'fourth root' of 81, is, which number when 

multiplied by it self four times gives 81. 
 
Example 1.3.119 
 

𝑎
1

3 = √𝑎13
= √𝑎

3
  

 
Example 1.3.120 
 

𝑑
1

2 = √𝑑12
= √𝑑  

 
Example 1.3.121 
 

27
2

3. This should be done without a calculator. Firstly, work out the cube root of 27 = 

√27
3

= 3. Then square this number (32) to give a final answer of 9.   
 
Example 1.3.122 
 

16
3

4 = (√16
4

)
3

= (2)3 = 8  

 
Example 1.3.123 
 



Page | 26  
 

100
2

3 = (√100
2

)
3

= (10)3 = 1000  

 

Fractional and negative indices 
 
Example 1.3.124 
 

16−
1

2 =
1

16
1
2

=
1

√16
=

1

4
  

 
Example 1.3.125 
 

16−
3

4 =
1

16
3
4

=
1

√1634 =
1

23 =
1

8
  

 
Example 1.3.126 
 

100−
3

2 =
1

100
3
2

=
1

√10032 =
1

103 =
1

1000
  

 
Example 1.3.127 
 

8
1

2 × 8
3

2 = 8
1

2
+

3

2 = 8
4

2 = 82 = 64  
 
Example 1.3.128 
 

8−
1

2 × 8
1

2 = 8−
1

2
+

1

2 = 80 = 1  
 
Example 1.3.129 
 

33×32

38 =
35

38 = 3−3 =
1

33 =
1

27
  

 
Student Exercise X1.3.23: 
 

1. a4  a3  2. b5  b  3. 3s  4s5 4. 33  
5. 3-3  6. 82  7. 8-2  8. 25  

9. 2-5  10. 16
1

2  11.  9
1

2  12.  32
1

5  

13.  27
1

3  14.  81
1

4  15. 81−
1

4  16.  8
2

3   

17. 8−
2

3  18. 100−
3

2  19. 125
2

3  20. a0   

21. 8y0  22. 4
1

2 × 4
3

2  23. 9−
1

2 × 9
1

2  24. 9−
3

2 × 9
1

2  
 

Standard form 
 

Very large and very small numbers must sometimes be expressed in standard form, A  10n, where 1 
< A < 10 and n is an integer. Translated this means that A must be a number between 1 and 10 and n 
is a positive or negative number. Here are some examples to clarify this. 
 

Example 1.3.130 The number 87000 can be written in standard form as 8.7  104.  
 



Page | 27  
 

Example 1.3.131 The number 0.000026 can be written in standard form as 2.6  10-5. If we talk about 
the decimal point moving to give us a number between 1 and 10, you will see that if the point moves 
to the left, the power is positive. If the point moves to the right, the power is negative. The number of 
places the point moves gives us the number in the power. 

 
Example 1.3.132 
 

146.2 = 1.462  100 = 1.462  102 
 
Example 1.3.133 
 

26 = 2.6  10 = 2.6 101 
 
Example 1.3.134 
 

0.9 = 9/10 = 9.0 X 10-1 
 
Example 1.3.135 
 

265 = 2.65  100 = 2.65 x 102 
 
Example 1.3.136 
 

0.0095 = 9.5  10-3 
 
Example 1.3.137 
 

5  10-5  3  102. First multiply the numbers without powers (5  3 = 15) and 

secondly, multiply the number with powers (10-5  102  =  10-5+2  =  10-3). 
 

 5  10-5  3  102 = 15  10-3 = 1.5  10-2 
 
Student Exercise X1.3.24: 
 
Write these in standard form: 
 
1. 6500  2. 0.0082   3. 132.3 
4. 0.5  5. 43   6. 2660000  

7. 0.35  8. 0.71053104  9. 6103210-2 

10. 910-1310-1 
 

Very simple equations 
 

Example 1.3.138 Here are some examples of very simple equations: 
 

• 2a = 8 

• a + 2 = 4 

• 3a + 6 = a + 10 

• 3(a + 2) = 9 

• 4a - 11 = 5a + 19 
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• 2(a - 1) - 4(3a + 6) = 10 

• 
𝑏

2
= 3 

• 
3𝑎

4
= 6 

 
In all these examples, there are letters and numbers on both sides of the equals sign and the letters 
have no powers higher than 1. (i.e. there are no a2 or a3 or b2 or b3 terms). Your answer must have a 
letter, which must be positive, on one side of the   = sign, and a number on the other side. It does not 
matter which side of the equals sign the letter is! To solve simple equations, you must follow a set of 
rules. 
 
Example 1.3.139 Solve 3(a + 2) = 9 
 

Step 1 Remove any brackets by multiplying them out. 
 

3(a + 2) = 9 
 

3a + 6 = 9 
 

Step 2 Put all the terms containing letters on one side and numbers on the other side. 
 

3a = 9 - 6 
 

When a term 'goes over’ the = sign to the opposite side, the sign changed: 
 

+ becomes -    - becomes + 

 becomes        becomes  
 

3a = 9 - 6 
 

3a = 3 
 

3  a = 3 
 

a = 
3

3
 = 1 

 
Check by substituting a=1 into equation 3(a + 2). 

 
3a + 6 = 9 

 
If a = 1 

 
3(1) + 6 = 3 + 6 = 9 

 
Working through the examples given at the beginning of this section: 
 
Example 1.3.140 Solve 2a = 8 
 

2a = 8 
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a =  
8

2
 = 4 

 
Check 

 
2a = 8 

 

If a = 4 then 2a = 2  4 = 8 Correct 
 
Example 1.3.141 Solve a + 2 = 4 
 

a + 2 = 4 
 

a = 4 – 2 = 2 
 

Check 
 

If a = 2 then a + 2 = 2 + 2 = 4 Correct 
 
Example 1.3.142 Solve 3a + 6 = a + 10 
 

3a + 6 = a + 10 
 

3a - a = 10 - 6 
 

2a = 4 
 

a = 
4

2
 = 2 

 
Example 1.3.143 Solve 4a - 11 = 5a + 19 
 

4a - 11 = 5a + 19 
 

4a - 5a = +19 + 11 
 

- 1a = 30 
 

a = 
1

30

−
 

 
a = - 30 

 
Example 1.3.144 Solve 2(a - 1) - 4(3a + 6) = 10 
 

2(a - 1) - 4(3a + 6) = 10 
 

2a - 2 - 12a - 24 = 10 
 

2a - 12a = 10 + 2 + 24 
 

- 10a = 36 
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a =  
36

−10
 = -3.6 

 

Example 1.3.145 Solve 
𝑏

2
 = 3  

 
𝑏

2
 = 3 

 

b = 32 = 6 
 

Example 1.3.146 Solve 
3𝑎

4
 = 6  

 
3𝑎

4
 =6 

 

a = 
6×4

3
 = 8  

 
Student Exercise X1.3.25: 
 
Solve: 
 

1. 3a = 12  2. x + 3 = 7  3. b - 2  =  5 

4 
𝑏

3
 = 4  5. 2a + 5 = 9  6. 5a - 3  =  22 

7. 3a + 11 = 35 – a  8. 4(g + 1 ) = 8 
9. 3(b - 1 ) - 2(3b - 2)  =  4 10. 4(a - 5) = 7 - 5(3 - 2a) 

 

Substituting numbers in formulae 
 
A formula is an equation which gives a relationship between two or more quantities e.g. c = hd, gives 
a formula for c in terms of h and d. c is the subject of the formula. The value of c may be found by 
simple arithmetic after substituting the given values of h and d. Read through the following examples. 
 
Example 1.3.147 If R = CA, find R when C = 6 and A =2 
 

R = C x A 
 

Substituting the numbers for the letters we get: 
 

R = 6 x 2 = 12 
 
Example 1.3.148 If v = u + at, find v when u = 10, a=2, t=6 
 

v = u + (a  t) 
 

Substituting the numbers for the letters we get: 
 

v = 10 + (2  6) 
 

v = 10 + 12 = 22 
 

Example 1.3.149 If 𝐼 =
𝑃𝑅𝑇

100
, find I, when P = 500, R = 3, T = 2 
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𝐼 =
𝑃𝑅𝑇

100
  

 
Substituting the numbers for letters we get: 

 

𝐼 =
500×3×2

100
= 30  

 

Example 1.3.150 If 𝑊 =
𝑘𝑧2

3
, find W, when k = 9 and z = 5 

 
Substituting the numbers for letters we get 

 

𝑊 =
𝑘𝑧2

3
  

 

𝑊 =
9×52

3  
 

 

𝑊 =
9×25

3
=75 

 
Example 1.3.151 If C = 30(R - 2), find C when R = 6 

 
Substituting the numbers for letters we get: 

 
C = 30(6 - 2) 

 

C = 304 = 120 
 

Remember to work out the bracket first! 
 
Example 1.3.152 Find R from the formula P = RT when P = 20 and T = 4 
 

P = RT 
 

Substituting the numbers for letters we get: 
 

20 = R  4 
 

R =  
2

4
 = 5 

 
Example 1.3.153 Find ‘a’ from the formula S = Ta + b, when S = 60, b = 12 and T = 8. 

 
S = Ta + b 

 
Substituting numbers for letters: 

 
60 = 8a+ 12 

 
60 - 12 = 8a 

 
48 = 8a 
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a = 
8

48
 = 6 

 
Example 1.3.154 Find x from the formula A = xyz, when A = 80, y = 4 and z = 5. 

 
A = xyz 

 
Substituting numbers for letters we get: 

 

80 = x  4  5 
 

80 = 20x 
 

x = 
20

80
 = 4 

 
Example 1.3.155 If C = 2(R - 6) find R when C = 24. 

 
C = 2(R - 6) 

 
Substituting the numbers for letters: 

 
24 = 2(R-6) 

 
24 = 2R - 12 

 
24+12 = 2R 

 
36 = 2R 
 

2

36
 = R 

 
R = 18 

 
Student Exercise X1.3.26: 
 
1. If J = ak, find J, when a = 15, and k = 3. 
2. If P = r - st, find P. when r = 20, s = 2 and t = 3. 

3. If 𝐼 =
𝑃𝑅𝑇

100
, find I, when P = 200, and R = 4 end T = 2. 

4. If 𝑥 =
𝑝𝑧2

2
, find x when p = 1 and z = 6. 

5. If C = 20(z + 6), find C, when z = 2. 
6. Find R from the formula, Z = RY, when Z = 40, and Y =5. 
7. Find A from the formula J = BA + C, when J = 120, C = 12 and B = 8. 
8. Find C from the formula H = Cbn, when H = 100, b = 2, and n = 10. 
9. If R = 3(p - 2), find R. when p = 9. 

10. If 𝐶 =
2𝑗2

𝑘
, find C when j = 3, and k = 6. 
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Exercise Answers 
 
1. Number answers to be included here. 
2. Detailed solutions accessible online via the instructor manual. 
 
Exercise XO.1 
 

1. 80%  2.   3. 75%  4. 28 4/7 % 

5. 120% 
 
Exercise XO.2 
 
1. 65%  2. 37. 5%  3. 89%  4. 60% 
5. 234% 
 
Exercise XO.3 
 
1. ¼  2. 3/10  3. 1 2/5  4. 1/3 
5. 3/8 
 
Exercise XO.4 
 
1. 0.63  2. 0.047  3. 0.5165  4. 0.031 
5. 0.07 
 
Exercise XO.5 
 
1. 15  2. 21  3. 15  4. 3.6 
5. 30 
 
Exercise XO.6 
 
1. £208  2. £192  3. £462  4. £378 
 
Exercise XO.7 
 
1. 25%  2. 20%  3. 28 4/7%  4. 20% 
5. 12 1/2% 
 
Exercise XO.8 
 
1. (a) 1 : 2 (b) 2 : 3 (c) 2 : 5 (d) 6 : 5 (e) 8 : 1 
2. 20:3 

3. 1 : 5 as a fraction  

 
Exercise XO.9 
 
1. £200 : £100    2. 25 : 35  3. 14cm, 21 cm, 49 cm 
4. (i) £12 (ii) £30  5. £210 

%
3

1
33

5

1
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Exercise XO.10 
 
1. 60p  2. 64p  3. 7.5 hours or 7 hours 30 minutes 
4. £5.25  5. 20 glasses 
 
Exercise XO.11 
 
1. €248.56  2. £482.78  3. £187.50  4.
 400 000 lire 
5. (i) 30000  (ii) £100.00 
 
Exercise XO.12 
 
1. 6 days  2. £6  3. 4 days 
 
Exercise XO.13 
 
1. + 3 + 9 = + 12   2. + 10 - 5 = + 5 
3. - 15 + 2 = - 13   4. - 20 - 20 = - 40 
5. + 13 - 10 = + 3   6. + 24 + 12 = + 36 
7. - 21 - 21 = - 42   8. - 21 + 21 = 0 
9. + 12 - 12+ 12 = + 12  10. + 100 + 50 + 20 =·+ 170 
 
Exercise XO.14 
 
1. + 12  2. + 12  3. + 40  4. + 9 
5. + 16  6. - 36  7. + 3  8. + 3 
9. - 3  10. - 100  11. - 2  1O. - 6 
13. - 4  14. - 51/3  15. - 4 2/3  16 + 25 
 
Exercise XO.15 
 
Here a, b and c have been chosen for the numbers. 

1. 4a  2.   3. a-8 

4 a + 6  5. a + b + c 6. 3ab 
7. 6a + 5b  8. 4a - b 
 
Exercise XO.16 
 
1. 5  2. 2  3. 7  4. 2 
5. 18  6. 0  7. 6  8. 24 
9. 24  10. 10 
 
Exercise XO.17 
 
1. 9  2. 64  3. 50  4. 12 
5. 76  6. 58  7. 30  8. 100 
9. 4.5  10. 12.5 
 

4

a
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Exercise XO.18 
 
1. 4  2. - 6  3. 2 4. 10  5. 0 
 
Exercise XO.19 
 
1. 14a  2. 5a  3. 8xy  4. 7a 
5. 6b  6. 2a + 2b 7. 6b - 13a 8. 8b2 + 2b 
9. 9s2t  10. 8b2 + 7b 
 
Exercise XO.20 
 
1. 6a2  2. 6ab  3. 24a  4. - 12a2 
5. - 12st  6. +12st  7. 8a4  8. 6a2b2 

9. ab  10. 4a  11.   12. 4abc 

13.   14.   15.  

 
Exercise XO.21 
 
1. 2x + 6  2. 4a + 4b 3. 6a - 6b  4. 5x - 15 
5. 12x + 6y 6. - m - n  7. - 6x - 10 8. - 12 + 18x 
9. - 2p - 3q 10. 12ab - 4b2 
 
Exercise XO.22 
 
1. 5x + 16 2. x - 10  3. - 2x2 + x - 4 
4. 8a  5. 7x2 + 29x + 16 
 
Exercise XO.23 
 
1. a7  2. b6  3. 12s6  4. 27 

5.   6. 64  7.   8. 32 

9.   10. 4  11. 3  12. 2 

13. 3  14. 3  15.   16. 4 

17.   18.   19. 25  20. 1 

21. 8  22. 16  23. 1  24.  

 
Exercise XO.24 
 
1. 6.5 * 103 2. 8.2 * 10-3 3. 1.323 * 102 4. 5 * 10-1 
5. 4.3 * 10 6. 2.66 * 106 7. 3.5 * 10-1 8. 2.1 * 109 
9. 1.2 * 102 10. 2.7 * 10-1 
 
Exercise XO.25 

b

a2

b

a−

y

3

3

1

27

1

64

1

32

1

3

1

4

1

1000

1

9

1
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1. a = 4  2. x = 4  3. b = 7  4. b = 12 
5. a = 2  6. a = 5  7. a = 6  8. g = 1 
9. b = -1  10. a = -2 
 
Exercise XO.26 
 
1. J = 45  2. P =  14  3. I = 16  4. x  =  18 
5. C = 160 6. R = 8  7. A = 13.5 8. C = 5 
9. R = 21  10. C = 3 
 
  



Page | 37  
 

Part 2 Advanced maths skills (with emphasis on Excel) 
 

2.1 Summation 
 

The Greek capital letter sigma  is used as a symbol for summation. If the values of variable x are: 1, 

4, 8 and 7, then x = 1 + 4 + 8 + 7 = 20.  In Excel, summation is executed using the function 
=SUM(range). 
 

  
 
Instead of saying that x variable is 1, 4, 8 and 7, we could have used the notation: x1=1, x2=4, x3=8 and 
x4=7. This subscript notation enables us to write an expression, such as: ∑ 𝑥𝑖

𝑛
𝑖=1 . Our example 

becomes: ∑ 𝑥𝑖 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 =  1 + 4 + 8 + 7 = 204
𝑖=1 . 

 
Assuming that we have the same values of x: 1, 4, 8 and 7, then the same logic, for example, applies 

to the expression: (x-3) = (1-3) + (4-3) + (8-3) + (7-3) = -2 + 1 + 5 + 4 = 8. However, note that this is 

not the same as x-3 = 20 - 3 = 17. 
 

The same summation principle also applies to: x2 = 12 + 42 + 82 + 72 = 1 + 16 + 64 + 49 = 130. In Excel 
we can either first calculate the squared values of every number and then add them up using =SUM() 
function, or we can use the =SUMSQ() directly (see cell D7 above). 
 

If we have two data sets x and y, then to calculate xy, given that x 1, 4, 8 and 7, and y is 2, 4, 7 and 3: 

xy = 12 + 44 + 87 + 73 = 2 + 16 + 56 + 21 = 95. 
 
The above operation is executed in Excel as follows: 
 

 
 
The alternative is to use Excel function =SUMPRODUCT() as in cell C15 above). 
 

If the mean value of our mini-series (1, 4, 8, 7) is 𝑥̅ =
∑ 𝑥

𝑛
 = 

1+4+8+7

4
=

20

4
= 5, then if we have 

∑(𝑥 − 𝑥̅), the result is = (1-5) + (4-5) + (8-5) + (7-5) = -4 - 1 + 3 + 2 =0. In fact, this particular expression 
is equal to zero for any data set. 
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2.2 Product 
 

The Greek capital letter pi  is used as a symbol for a product. If, again, the values of variable x are: 1, 

4, 8 and 7, then x means: x = 1  4  8  7 = 224. Just as with the example of summation, we can 

express the product as ∏ 𝑥𝑖
𝑛
𝑖=1 , which is calculated as ∏ 𝑥𝑖 = 1 × 4 × 8 × 7 = 224.4

𝑖=1  
 
Excel function for product is =PRODUCT(range). Below is the example of how to use it. 
 

 
 

2.3 Factorial 
 

The exclamation sign is a symbol for the factorial function. For example: 4! = 4  3  2  1 = 24. Or in 

general n!=(n-1)  (n-2)  … 1. Remember that 1!=1 and that 0!=1. Other than that, factorials are very 
intuitive.  
 
One way to express the factorial is to use the expression: 𝑛! = ∏ 𝑘𝑛

𝑘=1 .  
 
Excel function for factorial is =FACT(number). Below is the example how to use it: 
 

 
 

2.4 Binomial coefficient 
 
If we see two numbers one above the other, but without a fraction bar, and they are inside the 

brackets, like this: (
𝑛
𝑟

), this is called a binomial coefficient. This is calculated as the number of 

combinations of n, taken r at a time. For example, (
5
2

)=10, because the formula is: (
𝑛
𝑟

) =
𝑛!

𝑟!(𝑛−𝑟)!
, 

which in our case is: (
5
2

) =
5!

2!(5−2)!
=

5!

2! 3!
=

5×4×3×2×1

2×1 × 3×2×1
=

120

2 × 6
= 10. 

 
Imagine you had pieces of paper with one letter between a to e printed on each piece of paper. How 
many combinations of two letter you can select, providing that you do not allow the repeats (such as 
that a,b is the same as b,a and therefore not permitted)? The answer is 10, as we calculated above, 
and below we show all the combinations. 
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Excel function used to calculate the binomial coefficient is =COMBIN(n,r). Below is an example: 
 

 
 

2.5 Pi () and e 
 

Pi, written as the Greek latter , is an irrational number and in its shortest form it is known as 3.14. 

However, its decimal form never ends (for example, a number that looks similar to , such as 
3.1415900000 clearly ends after the fifth decimal point), nor it ever becomes repetitive (like 
3.141599999). It has an infinite number of digits behind the decimal point and there is no pattern 
among them.  
 

 represents the ratio of the circumference of any circle to the diameter of that circle. Regardless of 

the circle's size, this ratio will always be equal to .  
 
Below we are using several examples in Excel. The diameters vary from 7, 14, 28 and 12. Their 
corresponding circumferences are 22, 44, 88 and 37.7. If we divide the circumference by the 

diameter, we always get 3.14, which is the value of . 
 

 
 

Excel also has a function dedicated to  and it is =PI(). In cell A8, we just typed =PI() and Excel shows 
the value of 3.141593. 
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The maximum number of digits that Excel will display for =PI() function is 14. If you extend the field in 

which  is displayed, after the fourteenth digit behind the decimal points you will see just zeros: 
3.141592653589790000000. 
 
Another famous irrational number is e. It is often also called Euler’s number in tribute to the famous 

mathematician Euler. The value of e is approximately 2.7182… . Just like , it has an infinite number 
of digits behind the decimal point and there is no pattern among them. Also, e is the base of the 
natural logarithms (see below section 2.7). 
 
The value of e is in Excel obtained via the function =EXP(number). If we put 1 as the number, the value 
is 2.7182… . Below is the example from Excel: 
 

 
 

2.6 Compound interest and e 
 
There is a connection between the compound interest calculations in finance and the number e. In its 
briefest form, the formula for the compound interest is (1+r/n)n, where r is the annual interest rate 
and n is the number of periods within the year. If interest is paid at the following intervals, we get 
some interesting results: 
 

 
 
In the series of examples, we are paying interest at first every half year, i.e. twice a year (row 11), 
then once a month, then once a week, then once a day, then once every hour (row 15), etc. We also 
show the results if we paid every 100,000th interval (row 16). We can see that the results converge 
towards 2.718, which is e. This is just one of many examples where e as an irrational number appears. 
We could find at least a dozen of other applications from engineering to physics. 
 

2.7 Powers, exponents and logarithms 
 

To square a number, we just multiply it by itself, for example 2.828427×2.828427=7.9999…8. This is 
effectively using the number to the power of 2, which is called the exponent. In Excel we would use a 
symbol: 2.828427^2=8. The opposite operation is taking the square root, so to go back from 8, we use 
Excel function =SQRT(8), which will give us 2.828427.  
 
However if the exponent is larger than 2, then we cannot use the =SQRT() function. Excel does not 
have a dedicated function for calculating roots beyond number 2. The alternative is to use =8^(1/2), 
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which is 8
1

2. This will also give us 2.828427. The third option is to use Excel function =POWER(8,0.5), 

where 0.5 is just another expression for 
1

2
.   

 
If we use another example, shown below, where 83=512, which in Excel is expressed as =POWER(8,3). 

What happens if we wanted to calculate the third root of the value of 8? This is √8
3

 or 8
1

3. In Excel 
syntax, this is =8^(1/3). The value we get is 2. This value of 2 has a special meaning. 
 

 
 

Effectively 23 is 8 (222), which means that we multiplied 2 by itself 3 times to get this result. This 
number 3, in this case, is called the logarithm. This can be written as log2(8)=3. In this case, 2 is the 
base, 8 is the argument and the logarithm is 3. If we had log5(625)=4, then the base is 5, argument is 

625 and the logarithm is 4 (because 5555=625). In general, if bx=n, then logb(n)=x. As we can see, 
taking logarithms is inverse to calculating the exponent of the base. 
 
If the logarithm is written without the base, such as log(100)=2, then it is assumed that the base is 10 
(because 102=100). These are called the common logarithms.  
 

If the logarithm is written as loge(7.389)2, then this is called a natural logarithm (e2=2.7182=7.389).  
In Excel, several functions are used to retrieve logarithms. Below are some examples of using Excel 
functions for logarithms. 
 

 
 
Cell J30 contains function =LOG(). This is equivalent to the function =LOG10() from cell I30 and it 
returns the logarithm value for the base 10. The same result can be obtained using the function 
=LOG(number, base), which is what we did in cell J32, where the base was the same as before, i.e. 10. 
This last format of the log function in Excel can be used for any other base. In cell J33, we show the 
result for 25, but for the base 3. Cell J34 contains the function used for the natural logarithms, which 
is Excel function =LN().  
 



Page | 42  
 

We know that the value of e is approximately 2.718281828… . Cell J35 shows this value calculated 
using the function =EXP(). In cell J36, we reversed this operation by calculating the natural log value of 
2.718281828. As expected, the result is 1. Remember, functions =EXP() is inverse of function =LN() 
 
As =EXP() function is the same as saying en, we are showing in cells K38 and K39 identical results for 
using either =EXP(3) or =2.718282^3. 
 

2.8 Complex numbers 
 

We now revisit how to calculate the square root of a number. If, √16 = 4 and √1 = 1, what is √−1 =

? It turns out that the solution is the imaginary number i. So, the solution is: √−1 = ±𝑖. This means 
that the square root of a negative number will always have the imaginary number i attached to the 

actual value of the square root of the absolute part. So, this means, for example, that √−9 = ±3𝑖. 
 
If we use Excel to calculate the square root of the number i.e. =SQRT(), using the same examples as 
above, we get the same results, except that the negative numbers produce #NUM! result. This means 
that to calculate the square root of a negative number, we must use the function =IMSQRT(number). 
 

 
 
Unfortunately Excel is not precise enough, so for =IMSQRT(-1) we get the result of: 
0.0000000000000000061257422745431+i. As we can see in cell D4, sixteen zeros after the decimal 
point. The first part before i is virtually zero, so the result is i. In cell D5 in the above example we see 
that the square root of -9 is 3i. As before, the number 3i is preceded by 16 zeros, so for all practical 
purposes it is zero. 
 
Imaginary numbers can be combined with real numbers, which then creates the complex numbers. A 
typical complex number is: z = x + iy. Specific examples are: z1=3+4i, or z2=-4, or z3=-2-3i, or z4=2i. 
Examples z1 and z3 consist of both the real and imaginary part, z2 has only the real part and z4 only the 
imaginary part. 
 
If real numbers can be represented on a line, then complex numbers can be represented in a two-
dimensional space, where one axis is real and the other imaginary. The above four complex number 
examples are depicted as: 
 
 
 
 
 
 
 
 
 
 
 

z4 

z2 

z1 

Real 

Imaginary 

z3 
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Most of the usual algebraic laws apply to complex numbers, and they are added / subtracted / 
multiplied in a similar way as any regular numbers. The only difference is that you do not mix the real 
and imaginary part of the complex number.  
 
Excel uses the function =COMPLEX(real,imaginary) to define a complex number. In the example below 
we can see that in cell C9 there is only the real part present in the complex number and in cell C10 
only the imaginary part. Cell C11 shows both the real and imaginary part. 
 

 
 
In cells E9:E11 we get the same results, but we used the function =IMAGINARY(), which only shows 
the imaginary part of the complex number. To show just the real part of the complex number, we 
would have to use the function =IMREAL(). Example below shows both examples. 
 

 
 
We’ll show a couple of examples how to add and multiply complex numbers. 
 
Let’s use another example. If z1=3+4i and z2=-2-3i, then z1+z2 is: z1+z2 = (3+(-2))+(4i-3) = 1+i. An 
example from Excel uses a dedicated function for adding complex numbers =IMSUM(). 
 

 
 
Cells E16:E18 show the real part of the results from C16:C18 and cells H16:H18 show the imaginary 
part of the same results. 
 
In another example, if z1=3+4i and z2=-4, find z1+z2. The result is: z1+z2 = (3+(-4))+(4i+0) = -1+4i. We see 
the result below in Excel sheet. 
 

 
 

Let’s look at another example. If z3=-2-3i and z4=2i, find z1z2. The result is: z1z2 =(2i  (-2)) +(2i  (-

3i)) = -4i -6i2. Because i2=-1, we have -4i - 6  (-1) = -4i +6. The example below uses Excel function 
=IMPRODUCT() to multiply two complex numbers. 
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Just to demonstrate, if you use the same function, =IMPRODUCT(), to multiply two i numbers, you will 

get -1, which is exactly what i2 is. Remember, i2 = -1 and 𝑖 = √−1. See below the same example in 
Excel. 
 

 
 
 
Sometimes when Excel produces a result which is a complex number, it is a very long string of digits as 
in cell A31 below: 
 

 
 
To shorten it to a more manageable format (to three digits, for example), we can combine the 
function =COMPLEX() with a few text manipulation functions, such as above. The same complex 
number shown in cell E31 looks much more easier to read. 
 
There is quite a long list of functions in Excel dedicated to complex numbers. They all start with the 
prefix IM. Here is the list: 
 
IMABS, IMAGINARY, IMARGUMENT, IMCONJUGATE, IMCOS, IMCOSH, IMCOT, IMCSC, IMCSCH, IMDIV, 
IMEXP, IMLN, IMLOG10, IMLOG2, IMPOWER, IMPRODUCT, IMREAL, IMSEC, IMSECH, IMSIN, IMSINH, 
IMSQRT, IMSUB, IMSUM AND IMTAN. 
 
They are all located in the engineering group of functions. 
 

2.9 Relationship between , e and i 
 

There is a remarkable relationship that brings together , e and i, and it is called the Euler’s formula. 

Euler established that: ei = -1, or ei  + 1 = 0, or 𝑒2𝜋√−1 = 1. Amazing! 
 
We can try to calculate the same in Excel, though the result is not perfect (we already demonstrated 
some imprecisions in Excel). The example below demonstrates it. 
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r 

Length = r 1 radian 

To show in Excel that ei = -1, let’s take a look at cell K2 which contains the value of e, cell L2 the value 

of , and cell M2 just the value of i. The result is in shown in O2, which is the expression ei shown in 
Excel syntax.  
 
To get the result, we use =IMEXP() function, which is similar to =EXP(). Function =IMEXP() returns the 
value of e raised to the power of a complex number. As the exponent in this case is a complex 
number, we have to use the product function for complex numbers, which is =IMPRODUCT(). As we 
can see, we multiply i (written as =COMPLEX()) multiplied with =PI(). The result is  
-1+0.0000000000000032311…i . The first part is the real part (-1) and the second part is imaginary. 
The imaginary number is virtually zero (fifteen zeros before 32311…), and we can ignore it for all 
practical purposes. This means that effectively Excel returns the result of -1, which is to be expected. 
 

To show in Excel that 𝑒2𝜋√−1, let’s take a look at cell L5 that contains the value of 2. Cell O5 
produces the final result and we used the same functions as in the previous paragraph. We can see 
the result is 1+0.00000000000000330768…i . As before, the imaginary part is virtually zero and the 
result is +1, as expected. Again, not perfect, but given Excel internal engine, good enough! 
 

2.10 Trigonometry 
 
The angles are usually measured in degrees. The right angle is 900, for example, and the full circle 
consists of 3600, as we all know. However, there is another unit to measure angles, and it is called 
radians. When using Excel, radians are also a key unit for handling angles, so we better understand 
how they work and how they relate to degrees. 
 
If we take a radius of a circle and wrap the length of this radius around the circle, then we can 
“connect” every end of this length on the circle with the centre of the circle. The angle that such 
formed triangle has created is 1 radian. The picture below shows the idea that we are trying to 
convey. 
 
 
 
 
 
 
 
 
 
 
In a way, radian is a true measure of the circle, because it is defined by the radius of the circle. 
 

In a half circle, there are  number of radians. As the value of  is 3.14…, this means that half circle is 
the same as saying 3.14 radians and the full circle is 6.28 radians. One way to understand this is to say 
that if the radius of our circle (any circle) is a piece of string of a certain length, then we would need 
6.28 pieces of this string to put around the circle to completely cover the perimeter of this circle. As 

we know, a more precise answer is 2 pieces of string. 
 
Clearly there is relationship between radians and degrees. We also know that half circle is 1800, which 

means that 1 radian is 1800 / , or 180/3.14   57.295..0.  
 
Now we know that one radian is approximately 570, we can establish how to convert from radians 
into degrees, and other way round with two simple formulae. 
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The conversion from radians to degrees is done as: 
 

𝐷𝑒𝑔𝑟𝑒𝑒𝑠 =
𝑅𝑎𝑑𝑖𝑎𝑛𝑠 × 180

𝜋
 

 
And the conversion from degrees to radians is done as: 
 

𝑅𝑎𝑑𝑖𝑎𝑛𝑠 =
𝐷𝑒𝑔𝑟𝑒𝑒𝑠 × 𝜋

180
 

 
We can create a little table to show how different degrees translate into radians and what is their true 

value when expressed in terms of . 
 

 
 

Column B shows the true value of an angle in radians expressed as a fraction of . However, because 

 is a famous irrational number that is approximated by 3.1428571…, these exact values are 

approximated by multiplying the degrees with  over 180. Column C shows this formula for 
converting degrees into radians. However, in Excel we do not have to do this, we can use a dedicated 
=RADIANS() function, as in column D. The results are identical to those in column C. 
 
In Excel the function that is opposite to =RADIANs(number) is =DEGREES(number). The table below 
shows a few examples of conversions from degrees to radians and from radians to degrees. 
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Now we are ready to explore some basic trigonometric functions. 
 

We’ll start with a simple right angle triangle. Take a look at the angle  (Greek letter theta), which is 

opposite of the right angle, symbolised by the little square . 
 
 
 
 
 
 
 
 

The three sides are called: adjacent (a shorter side next to ), opposite and hypotenuse (a longer one 

next to ). You will remember this from elementary mathematics, because Pythagoras’ theorem is 
usually derived in this manner. However, this is also the basis for explaining some elementary 

concepts in trigonometry. For any angle , the three basic functions of trigonometry, which are the 
sinus, cosines and tangent, can be calculated as: 
 

sin 𝜃 =
𝑂𝑝𝑝𝑜𝑠𝑖𝑡𝑒

𝐻𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
 

 

cos 𝜃 =
𝐴𝑑𝑗𝑒𝑐𝑒𝑛𝑡

𝐻𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
 

 

tan 𝜃 =
𝑂𝑝𝑝𝑜𝑠𝑖𝑡𝑒

𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡
 

 
If, for example: Opposite=3, Adjacent=4 and Hypotenuse=5, then the three trigonometric values we 
listed here are calculated as: 
 

sin  = 3/5 = 0.6  

cos  = 4/5 = 0.8 

tan  = 3/4 = 0.75 
 
In addition to these three basic trigonometric functions, there are three other “convenience” 
functions. They are nothing but the reciprocals, and they are: 
 

csc 𝜃 =
1

sin 𝜃
 ,  sec 𝜃 =

1

cos 𝜃
  and  cot 𝜃 =

1

tan 𝜃
  

 
These functions are called cosecant (csc), secant (sec) and cotangent (cot). Note that there are other 
functions, but beyond this recap. 
 

There are other ways to express some of these relationships. For example: tan 𝜃 =
sin 𝜃

cos 𝜃
 , or 

cot 𝜃 =
1

tan 𝜃
=

cos 𝜃

sin 𝜃
=

𝐻𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒

𝑂𝑝𝑝𝑜𝑠𝑖𝑡
, etc. The Pythagorean theorem can also be expressed in terms of 

trigonometric functions as: sin2  + cos2  = 1. Even using complex numbers, we can calculate the 

same functions. For example: sin 𝜃 =
𝑒𝑖𝜃−𝑒−𝑖𝜃

2𝑖
 , or cos 𝜃 =

𝑒𝑖𝜃−𝑒−𝑖𝜃

2
 , etc. However, we will only focus 

on basic formats. 
 

 

Opposite 

Adjacent 
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Although we explained the meaning of the basic trigonometric functions using the right angle triangle, 
a trigonometric value of an angle is universal. For example, sine of a 300 angle is always 0.5, or sin 
900=1. 
 
As Excel fundamentally works in radians, we must be careful how we interpret the values if we try to 
calculate a sine of an angle of 300 degrees, for example. If you entered =SIN(30), what you get is the 
value of -0.98803.., which is the sine value of an angle that is measured in radians, i.e. sine of 30 
radians. If you want a sine of an angle that is 30 degrees, you must use a combination of Excel 
functions: =SIN(RADIANS(number)), where number is the value in degrees. 
 
An example below shows incorrect value in cell B29 and the correct value for sine (300) in cell D29. 
The values in D30:D35 are the sine values of some of the more unique values of angles in degrees. 
 

 
 
 
Let’s return to the basic trigonometric functions. Below we show some of the angles and their 
corresponding trigonometric functions. 
 

 
 
To bring all these trigonometric functions in one pictorial, we could use the unit circle. This is the 
circle whose radius is equal to 1: 
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Let’s put the coordinates at four prominent points coinciding with the sides of the world, such as 
North, South, East and West. Something like this: 
 
 
 
 
 
 
 
 
 
 
 
 
 
If we were to show, for example, the sin value of an angle that has zero degrees, in other words, 
imagine an arrow going from 0 to (1,0), then sin of 0 is 0. Imagine now an arrow going from 0 to (0,1). 
This is now 900 degrees in relation to 0 to (1,0), and the sine value of 900 is 1. This implies that the sin 
of 1800 will be 0 and the sin of 2700 will be -1. When we come back to 3600, we have the sin of 3600 
again equal to 0. So, clearly the sinus value is oscillating between 0 to 1, then again to 0 and to -1 
before it returns back to 0. 
 
The cosine values are opposite of sinus values. At the angle of zero, cosine is 1, at 900 it is 0, etc. In 
other words, when the two points are on the two lines that are perpendicular to each other, the 
cosine value will be zero. This idea is very interesting in the context of the correlation coefficient. The 
closer the two variables are to each other, the closer the correlation coefficient to 1. If two variables 
have no connection, their coefficient is close to zero, and effectively they are perpendicular to one 
another. 
 

1,0 

0.-1 

-1,0 

0,1 

0 
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The above pictorials provide a graphical interpretation of the correlation coefficient and connects 
some aspects of trigonometry with statistics. 
 
Let’s close with a few more Excel functions. The sheet below contains number 30 in cells H9:H11. If 
we were to use sin, cos and tan function for these values, Excel would interpret that number 30 is 
given in radians. In this case, sin, cos and tan values in cells I9:I11 refer to an angle of 30 radians. To 
get proper values for the degrees (i.e. 30 degrees), as before, we need to convert radians into degrees 
and then calculate sin, cos and tan. This is given in cells K9:K11. 
 

 
 
The inverse functions in Excel are called arcsine =ASIN(number), arccosine =ACOS(number) and 
arctangent =ATAN(number). In other words, if we wanted to convert the sin, cos and tan values back 
into degrees (or radians), we would use one of these functions. 
 
Cells H14:H16 below contain the numbers representing sin, cos and tan values. We would like to 
calculate the angle that corresponds to these values. Again, if we just used Excel function as in cells 
I14:I16, we get the values of an angle in radians. However, if we combine these functions with the 
function =DEGREES(number), we get the correct values in degrees. Cells K14:K16 show 30 degrees, 
which is the correct answer for the corresponding values for sin, cos and tan. 
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To recap the most crucial point as how Excel treats different values, the table below uses examples of 
several angles between 00 and 900 and their sine values, as well as how to calculate the angles from 
the sine values. 
 

 
 

2.11 Calculus 
 
This refresher will cover only three topics from calculus, namely: the notion of limit, integrals and 
derivatives. These are the most fundamental concepts of calculus. 
 
The concept of a limit is very intuitive. In calculus, a limit is the value that a function "approaches" as 
the input, or index, approaches some value. A limit is written as: 
 

lim
𝑛→𝑐

𝑓(𝑛) = 𝐿 

 

This is read as: “the limit of the function  of n, as n approaches c, is equal to L. We already encounter 
this concept when we discussed compound interest. We said that as we increase the interval n for 
paying the interest, the formula (1+r/n)n was approaching the value of e, which is 2.718. This can be 
written as: 
 

lim
𝑛→∞

(1 +
𝑟

𝑛
)

𝑛

= 𝑒 = 2.718 

 
This expression “approaches certain value”, such as infinity (or the alternative expression is “tends 
towards infinity”), means that this value (i.e. the infinity) will never be reached, but as we get closer, 
we begin to approach the limit L (which in our example above is 2.718). 
 

We can take a simple function such as: 𝑓(𝑥) =
1

𝑥
. If we start with x=1 and increase towards infinity, 

we are effectively trying to find the limit for this function. Let’s do a quick experiment: 
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As we can see, the larger the value of x, the closer the result is to zero. Or, as we said, if x tends 

towards infinity, the result approaches zero. In other words: lim
𝑛→∞

1

𝑥
= 0. This is the concept of a limit.  

 
Let’s remind ourselves of the concept of the slope. Below we have a simple linear function y=1+2x. 
We can see that for every change in x, there is a change in y. In other words, the slope of the function 

is calculated as: 𝑆𝑙𝑜𝑝𝑒 =
𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑦

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑥
=

∆𝑦

∆𝑥
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The symbol  (Greek letter delta) is used to represent the change. So, the slope is a result of the 
changes in y as the changes in x take place. 
 
The above calculation is simple and logical for a simple reason that we have a function that is nothing 
but a straight line. What if the line is curve? 
 
In this case, at any point of this curve, we can put a tangent, which is straight line. Let’s now look at 
two dots on this tangent (straight) line that are so close together that they are both touching the 
curve. This is almost impossible, as the tangent can only touch a curve at one point, but imagine that 
these two points are so close that the distance between them is infinitesimally small (almost zero). In 
this case, we can use the same formula for the slope as we did earlier. A bit difficult to sketch this, but 
let’s pretend that the two dots below are really, really close to one another. 
 

 
 
We can take infinitesimally small changes in x and measure the changes in y. This will give us the slope 

of the curve at this point. What we are saying is that if x changes to x+x, and x is very small, then y, 

which is the function of x, i.e. (x) will change to (x+x). 
 
Going back to our simple slope formula, we can say that:  
 

∆𝑦

∆𝑥
=

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
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The above formula should be rewritten as follows: 
 

𝑓′(𝑥) = lim
∆𝑥→0

𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
 

 

We recognize this as the limit of the function from above. The formula reads: “The derivative of  

equals the limit of (x+x)- (x) over x, as x tends towards zero”. 
 

So clearly, the symbol for derivative is ’(x), or as it is sometimes written as dy/dx: 
 

𝑑𝑦

𝑑𝑥
= 𝑓′(𝑥) =

𝑓(𝑥 + 𝑑𝑥) − 𝑓(𝑥)

𝑑𝑥
 

 

How do we put this into practise? Let’s say that our function (x)=x2. How do we calculate the 
derivative of this function?  
 

If (x)=x2, we want to see what is (x+x). Well, we just need to take it to the power of 2, i.e.: 

(x+x)=(x+x)2, which can be written as (x+x)=x2 + 2x x +( x)2. To calculate the slope, we have: 
 

𝑠𝑙𝑜𝑝𝑒 =
𝑓(𝑥 + ∆𝑥) − 𝑓(𝑥)

∆𝑥
=

𝑥2 + 2𝑥∆𝑥 + (∆𝑥)2 − 𝑥2

∆𝑥
=

2𝑥∆𝑥 + (∆𝑥)2

∆𝑥
= 2𝑥 + ∆𝑥 = 2𝑥 

 

In the above equation, at the very end, we just got rid of x, because it infinitesimally small and 

virtual zero, so we can treat it as non-existent in the equation. The answer is that if we have (x)=x2, 

then the derivative of this function is ’(x)=2x. In fact, there are numerous rules for calculating 
derivatives, but we will not go into this. We just want to understand the meaning of the derivative of 
a function. 
 
From what we saw so far, derivatives will also create a function, so if the original function was non- 

linear, a parabola for example, such as (x)=x2, the first derivative of this function is a linear function 

’(x)=2x. 
 
Essentially, the derivative is the rate of change of a function at any given point. So, the derivative is 
nothing but the rate of change of the function. To use the real-life analogy, and let’s take driving a car 
example, then derivative is the same as the velocity at which this car moves at any point in time x. If it 
is positive, it increases, if it is negative, it decreases. 
 

You can also take the second derivative of the function too, which is symbolised as ’’(x). The second 
derivative is, in the case of the car example, equivalent to the acceleration. Sounds much simpler than 
saying the rate of change of the rate of change. 
 
If we were to use analogy from business and economics, then finding a derivative of the cost function, 
for example, is called the marginal cost. A derivative of the revenue function, for example, is called 
the marginal revenue. In both case the interpretation is something as follows: if the total costs for 

producing x number of units is described by a function (x), then ’(x), or the derivative of this 
function, gives you the value for producing just one more incremental unit. The same goes for the 
revenues. 
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Another way to think about derivatives is to consider a function that describes the price level of an 
economy at any point in time. The first derivative of this function is the inflation rate (changes in price 
level), and the second derivative shows the rate at which the inflation is changing. 
 

Integration is an opposite operation of derivation. If ’(x)=2x, then after we calculated the integral of 

this function, which is , the answer is: 2x dx = x2 + c. As we can see, we are back to our original 

function (x)=x2, except we have some “dangling” letter c. Let’s see what is the meaning of this c. 
 

 
 

The second picture illustrates this scenario. It is still to imprecise. What if we take x to be very, very 
small?  
 

 
 
Then, as the third picture shows, we would get close to the true area under the curve. 
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Imagine we have a function (x), which is a curve as depicted above. Let’s try to calculate the area 

under this curve. The first graph shows one possible option. We put a series of bars whose width is x 
and we calculate the area for all these bars. After we add all these areas up, we have an approximate 

area below the curve. Clearly these bars are too wide, so we need our x to be smaller. The second 

picture illustrates this scenario. It is still to imprecise. What if we take x to be very, very small? Then, 
as the third picture shows, we would get close to the true area under the curve. 
 

As before, this is the limit game. The smaller x is, or, as it tends towards zero, the more precise our 
area calculation will be, because it approaches the limit of this function. 
 
As before with derivatives, integrals have their rules, and we will not go into any of the details here. 

However, after integrating, for example, 2x dx = x2 + c, the first part of our result is 2x. Because of the 
rules of integration, there are many functions that will have the first part of the answer as x2. For 
example, x2+1, or x2+12, or x2-2, all have the first part of the result as x2. However, the derivative of a 
constant is zero. In other words, the numbers 1, 12 or -2 in our previous examples will all produce 
zero for a derivative. To reverse the operation, we say that if the derivative of a constant is zero, then 
the integral should have the constant attached to the first part of the answer. Hence, c at the end. In 
other words, we do not know what the constant is, but we know that there could be one after we 
integrate a function.   
 
What is the interpretation of integrals in business and economics? It is opposite of derivatives, i.e. 
they are used to find the total cost function, the total revenue function, etc. A typical engineering 
interpretation of an integral vary from how much asphalt to fill in a hole in civil engineering, to 
calculating circuits in electronics. Calculating an average value of a curve is also done using integrals. 
 

2.12 Vectors 
 
Vector represents a quantity that has a magnitude and direction. Velocity is a good example of a 
vector. Velocity is not just a speed. It is a speed and a direction.  
 
Vectors can be easily presented in a graphical form. Below are two vectors. One shows a car A 
traveling at 60 mph in the NE direction and the other one a car B traveling at 30 mph in the NW 
direction. 
 
 N 
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S 

 
 
 
 
 
 
  
 
 
 
 
Vectors are represented with bold small letters, such as a or b. The magnitude of the vector is 
represented as Modulus a, or Mod a. This is also shown as |a| or ‖𝒂‖.  
 
Vectors can be added, subtracted, multiplied, etc. Most of the general rules of algebra when dealing 
with ordinary numbers apply equally to vectors. For example, a + b = b + a, or a + (b + c) = (a + b) + c, 

or a  0 = 0, etc. 
 
In algebra, vectors are represented as a single column of numbers in square or round brackets. Below 
are two examples of vectors: 
 

 (
−2
3

) or  [
3
2
5

] 

 
To add two vectors, we simply add the corresponding elements from each vector: 
 

[
2
3
1

] + [
5
4

−1
] = [

7
7
0

] 

 
If the vectors are not of the same size, you cannot add them. 
 
Scalars are also quantities, but unlike vectors, they only have the magnitude (not direction). A good 
example of a scalar is length, or power, or volume, etc. Vectors can be multiplied by scalars. Scalars 
are represented by a single number. To multiply a vector a with scalar 3, for example, we get 3a.  
 
As before, most of general rules of algebra (commutative law, associative law, distributive, etc.) apply 
to vectors and scalars. For example, ma = am, or m(a+b) = ma + mb, etc. 
 
To execute addition or subtraction in Excel, we do not have any dedicated functions, but we use the 
array data entry, which means a collection of cells is entered with CTRL, ALT and ENTER keys pressed 
simultaneously. Below are the two examples: 
 

A 

B 

W E 



Page | 58  
 

 
 
The first example is adding two vectors, one in cells A3:A5 and the other one in B3:B5. We first 
highlight the cells D3:D5, where the result will be placed. After that, we just type A3:A5+B3:B5. 
However, we do not press ENTER. We press CTRL, ALT and ENTER key simultaneously. This marks cells 
D3:D5 as an array and produces the correct results. The curly brackets are added automatically by 
Excel to imply that this is an array. The same applies to subtraction, as shown in cells A7:D9. 
 
Multiplication and division are executed in Excel exactly in the same way. See the example below. 
 

 
 
Let’s say we want to multiply each vector above with a scalar m, where m=2, and let’s use the same 
vectors as above. The two vectors become: 
 

2  (
−2
3

) = (
−4
6

)               2  [
3
2
5

] = [
6
4

10
] 

 

Clearly, to multiply a vector with a scalar m, in the first case we used [
−2𝑚
3𝑚

] and in the second [
3𝑚
2𝑚
5𝑚

]. 

 
In Excel, to multiply a vector with a scalar, we use the same technique as above. The example below 
demonstrates it. 
 

 
 
To calculate the magnitude of a vector, which as we said is symbolised as |a|, you need to square all 
the elements in the vector and then take the square root. For example: 
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|a| = [

2
−4
2
1

] = √22 + (−4)2 + 22 + 12 = √25 = 5 

 
To do the same in Excel, we combine the functions =SQRT() and =SUMSQ(), as shown below: 
 

 
 
Scalar product of two vectors, for example vectors a and b, can be visualised as follows: 
 
 
 
 
 
 
 
 
The projection of vector b on vector a is represented as b1. The scalar product of the vectors a and b is 

then: a • b = |a| |b1|. The scalar product is also called the dot product. From the above sketch we 

can see that  is the angle between vectors a and b. This means that the relationship can be 

expressed as |b1| = |b| cos . Equally, the above expression for the dot product can also be shown as:                       

a • b = |a| |b|cos . 
 
To calculate a scalar product between two vectors in Excel, we use function =SUMPRODUCT(range1, 
range2). Below is an example. 
 

 
 
As we can see in cell K10, there is no need to use the array formula entry as the dot product is a single 
number. 
 
When two vectors are at right angles at each other, the dot product is equal to zero. 
 

2.13 Matrices 
 

What if we have more columns in a vector, such as: (
2 7

−1 3
)? Well, then they are not called vectors, 

but matrices. In fact, a single column matrix is a vector.  
 
Just like vectors, in algebra matrices are expressed in bold letters, but as capital letters. For example:  
 

|b|cos  

|b| 

P 

b1 
a 

b 

 
O 

B 

A 
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A = (
15 3 2
17 2 5
32 5 7

) 

 
This means that, just like with vectors, majority of the usual laws of algebra apply to matrices. So, for 
example: A + B = B + A, or A + (B + C) = (A + B) + C, etc. Multiplying with a scalar (single number), is 
also identical to vectors and the usual laws of algebra: ma = am, or m(A + B) = mA + mB, etc. 
 
Any table can be represented as a matrix. For example, let’s look at a mix of nationalities in an adult 
learning class: 
 

 English Scottish Irish Welsh 

Men 15 3 2 1 

Women 17 2 5 3 

Table: Nationalities in a class per gender 
 
This table, if represented as a rectangular array of numbers, becomes a matrix: 
 

(
15   
17   

3 2 1
2 5 3

) 

 
In the above table, we might like to get the totals per columns and rows. The table then looks as: 
 

 English Scottish Irish Welsh Total 

Men 15 3 2 2 22 

Women 17 2 5 3 27 

Total 32 5 7 4 49 

Table: Nationalities in a class per gender 
 

Let’s look at the column with the totals for men and women. We have effectively added: 
 

(
15
17
32

) + (
3
2
5

) + (
2
5
7

) + (
2
3
4

) = (
22
27
49

) 

 
This means that a matrix can be treated as a series of vectors, and by adding all the individual 
elements of every vector, we get the sum of the matrix. 
 
To add the numbers from B3:B5, C3:C5, D3:D5 and E3:E5 in Excel and put the result in H3:H5 (which is 
identical to the result in F3:F5 achieved by a simple =SUM() function), we used the same technique as 
with vectors and applied the array formula. 
 

 
 
Sometimes it is convenient to assign index numbers to the elements in a matrix, to make sure they 
are more easily identified. For example:  
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A = (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) 

 
The above notation also indicates that matrices have dimensions. The dimension (or size) of the 

above matrix is 33. However, the dimension does not have to be square, such as nn, it can be nm. 
 
To add and subtract matrices, assuming they are square, means that we need to add/subtract the 
corresponding elements from the two matrices. Here is an example: 
 

(
1 3
5 −4

) + (
6 3

−2 −1
) = (

7 6
3 −5

)  

 
To add and subtract matrices in Excel, we use the same techniques as adding and subtracting vectors. 
Example below demonstrates it. 
 

 
 
We again highlighted four cells, which will be the matrix with the results (G8:H9). In this case, we 
added cells A8:B9, which was one matrix, with D8:E9, which was the second matrix. After we typed 
the formula, we entered it as an array formula pressing CTRL, ALT and ENTER simultaneously. 
 
If we multiply two matrices that have the same number of rows and columns (square matrices), the 
resulting matrix will have the identical number of rows and columns. The multiplication rule is: 
 

(
𝑎11 𝑎12

𝑎21 𝑎22
) + (

𝑏11 𝑏12

𝑏21 𝑏22
) = (

𝑎11𝑏11 + 𝑎12𝑏21 𝑎11𝑏12 + 𝑎12𝑏22

𝑎21𝑏11 + 𝑎22𝑏21 𝑎21𝑏12 + 𝑎22𝑏22
)  

 
For multiplying two matrices, we use Excel function =MMULT(array1, array2). The example is given 
below. This is also an array formula. 
 

 
 
The formula {=MMULT(A12:B13,D12:E13) applies to all four cells G12:H13. As before, the cells were 
first highlighted, after which we type this formula and press ALT, CTRL and ENTER simultaneously. 
 
We already know how to multiply the vector (which is a single column matrix) with a scalar. The same 
applies when we want to multiply a matrix with a scalar: 
 

    5  (
2 −3
0 4

) = (
10 −15
0 20

) 

 
In Excel multiplication of a matrix with a scalar is executed the same way as multiplication of a vector 
with a scalar. Below is an example. 
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As we can see, this is the same array formula used for vector and scalar example. 
 
If we multiply two matrices that do not have the same number of rows and columns, the resulting 
matrix will be as in the example below: 
 

(
15 3 2
17 2 5
32 5 7

) (
4 1
3 −1
5 0

) = (
79 12
99 15

178 27
) 

 
As above, the multiplication is achieved always by multiplying the row in the first matrix by the 

column in the second matrix. So, to get 79, we do the following: (154) + (33) + (25) = 79. To get 15 

in the second row, second column, for example, we do: (171) + (2-1) + (50) = 15, etc. 
 
Or in more general terms:  
 

(

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) (

𝑏11 𝑏12

𝑏21 𝑏22

𝑏31 𝑏32

) = (

(𝑎11 × 𝑏11) + (𝑎12 × 𝑏21) + (𝑎13 × 𝑏31) (𝑎11 × 𝑏12) + (𝑎12 × 𝑏22) + (𝑎13 × 𝑏32)

(𝑎21 × 𝑏11) + (𝑎22 × 𝑏21) + (𝑎23 × 𝑏31) (𝑎21 × 𝑏12) + (𝑎22 × 𝑏22) + (𝑎23 × 𝑏32)
(𝑎31 × 𝑏11) + (𝑎32 × 𝑏21) + (𝑎33 × 𝑏31) (𝑎31 × 𝑏12) + (𝑎32 × 𝑏22) + (𝑎33 × 𝑏32)

) 

 
Another example, though the same rules apply is: 
 

(
6 2 9
3 5 0

) (
2 7
1 −2
4 0

) = (
50 38
11 11

) 

We got the result by applying the previous rule: 
 

  [
62 + 21 + 94 67 + 2 (−2) + 90
32 + 51 + 04 37 + 5 (−2) + 00

] 

 
In Excel, we use the same function =MMULT(array1, array2) to multiply any size of a matrix. Example 
below shows it. 
 

 
 
The only difference from square matrices or vectors is how many cells we are going to highlight 
before we enter the array formula.  
 
What is a transposed matrix, i.e. ATor A’? If we change rows into columns, we get a transposed 
matrix: 
 

A = (
1 2
3 4

) becomes AT or A’ = (
1 3
2 4

) 



Page | 63  
 

 

A more general expression is: A=(
𝑎11 𝑎12

𝑎21 𝑎22
)   becomes  AT=(

𝑎11 𝑎21

𝑎12 𝑎22
), or (aij)T=aji. 

 
To transpose a matrix in Excel, we used a dedicated function =TRANSPOSE(array). This is an array 
function and the example below shows how to use it. 
 

 
 
As before, we first highlight the area where the transposed matrix will be, in our case D28:E29, then 
enter the function =TRANSPOSE(A28:B29) and press simultaneously CTRL, ALT and ENTER. 
 
If we have a square matrix (the same number of rows and columns), then we can calculate a 

determinant of a matrix. Determinant of a matrix is denoted as det A, or just as: det = (
𝑎 𝑏
𝑐 𝑑

). To 

find the determinant of A, we follow the rule: If A = (
𝑎 𝑏
𝑐 𝑑

), then det A =|
𝑎 𝑏
𝑐 𝑑

| = ad -bc 

 

For example: If A = (
1 2
3 4

), then det A = |
1 2
3 4

|= 14 – 32 = -2 

 

For a 33 matrix, a determinant is calculated as follows: 
 

A = (

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

), then det A =|

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

| = aei -ahf+dhc-dbi+gbf-gec 

 
Excel function for determinants is =MDETERM(array) and the example below shows how to use it. 
 

 
 
For larger matrices, manual calculations are just a bit more complex, as they require understanding 
how to find the matrix cofactor. However, in Excel the function =MDTERM(array) does not require any 
deeper knowledge of matrix algebra. In any case, remember that only square matrices can have a 
determinant. 
 

There are a few unique matrices, one of them is called a zero matrix. Here is an example of a 22 zero 

matrix:  (
0 0
0 0

). 

 
Another unique type of a square matrix is identity matrix, or sometimes called the unity matrix. A 

22 identity matrix looks as follows: I = (
1 0
0 1

). A 33 identity matrix is: I = (
1 0 0
0 1 0
0 0 1

). 

 



Page | 64  
 

Both zero and identity matrices are necessary so that the laws of algebra can be followed, hence the 
term matrix algebra. Most of the laws that apply to numbers, apply to matrices, with few exceptions. 
 
A matrix can also be inversed, so A can be turned into A-1. When the original matrix is multiplied by its 
inverse matrix, the result is always the identity matrix. For example: A A-1 = A-1 A = I. However, this is 

only possible if det A is not equal to zero (i.e. det A  0).  
 

It can also be said that if A = (
𝑎 𝑏
𝑐 𝑑

), then A-1 = 
1

det 𝑨
(

𝑑 −𝑏
−𝑐 𝑎

). 

 
Let’s use an example. 
 

A = (
3 2
1 4

), and det A = |
3 2
1 4

| = 34 - 21 = 10, then A-1 = 
1

10
(

4 −2
−1 3

) = (
0.4 −0.2

−0.1 0.3
). 

 
In Excel, we can use function =MINVERSE(array) to calculate the inverse of the matrix. The example 
below demonstrates it. 
 

 
 
As before, =MINVERSE(array) is an array formula, so it is used like all other array formulas. 
 
We said that A A-1 = I. We can verify this on our practical example: 
 

A  A-1 = (
3 2
1 4

) ×
1

10
(

4 −2
−1 3

) = (
1 0
0 1

) 

 
In Excel, we can achieve this effortlessly, as per the example below. 
 

 
 
We used function =MMULT(array1, array2) to multiply two matrices. The first matrix is N3:O4 and its 
inverse is given in Q3:R4. The function is an array function, so the result is another matrix in V3:W4, 
and as we can see it is the unity matrix, as expected. Again, remember that if a matrix does not have a 
determinant, i.e. it is equal to zero, then you cannot find the inverse of the matrix. 
 
To divide two matrices is quite a complex procedure, involving most of the terms we covered so far. 

Fortunately, in Excel it could not be simpler. If we have two matrices A and B, then A  B = A  B-1. 
This means that to divide A with B, all we have to do is to multiply A with the inverse of B, i.e. B-1. 
Below is the example from Excel. 
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Matrix A, in our case, is in N7:O8 and matrix B is in Q7:R8. We used again array function =MMULT(), 
but this time we combined it with the function =MINVERSE(). As it is an array formula, we first 
highlighted the area where the result will be, i.e. T7:U8, then entered the formula 
=MMULT(N7:O8,MINVERSE(Q7:R8)) and pressed CTRL, ALT and ENTER. The result is shown. 
 
If inverse matrix (B−1 in our case) does not exist because B has no inverse (since det B = 0), you cannot 
calculate this in Excel. 
 
It is extremely easy to use the function =MINVERSE() in Excel. However, if we had to do it manually, 
the procedure would be very taxing. Let’s explain. The next section might be a bit challenging, so be 
patient. If you can digest the first few paragraphs, you will gain full understanding of the complexity of 
calculating the inverse of the matrix. 
 
Let CT be the transpose matrix of cofactors of matrix A. This transposed matrix of cofactors CT is called 
the comatrix of A, or the adjoint of A. Sometimes the adjoint is written not as CT, but as cof A, or adj 
A. To calculate the transposed matrix of cofactors, we start with the equation: 
 

A−1 =
1

det 𝐴
𝑪𝑇    or      A-1=

1

det A
com A 

 
From there: 𝑪𝑇 = A−1 det 𝑨       or     cof A = A−1 det 𝑨 
 
So, what are the cofactors? If we take a square matrix, then for every element in the matrix we can 
calculate the cofactor. To calculate the cofactors, we first need to create a series of matrix minors. A 
minor of the matrix is created by eliminating the row and the column for every element of the matrix. 
For example, to calculate the cofactor for element a11 below, we create a minor by eliminating all the 
elements from row 1 and column 1. 
 
𝑎11   … 𝑎1𝑗   … 𝑎1𝑛   𝑎11   … 𝑎1𝑗   … 𝑎1𝑛   𝑎11   … 𝑎1𝑗   … 𝑎1𝑛  
.   .     .  .   .     .  .   .     .   
.   .     .  .   .     .  .   .     . 
𝑎𝑖1   … 𝑎𝑖𝑗   … 𝑎𝑖𝑛   𝑎𝑖1   … 𝑎𝑖𝑗   …   𝑎𝑖𝑛   𝑎𝑖1   … 𝑎𝑖𝑗   … 𝑎𝑖𝑛  
.   .     .  .   .     .  .   .     .   
.   .     .  .   .     .  .   .     . 
𝑎𝑛1   … 𝑎𝑛𝑗   … 𝑎𝑛𝑛   𝑎𝑛1   … 𝑎𝑛𝑗   … 𝑎𝑛𝑛   𝑎𝑛1   … 𝑎𝑛𝑗   … 𝑎𝑛𝑛  
 
 
In the second example above, we want to calculate the cofactor for element ain. This means 
eliminating the ith row and the nth column to create a minor. In the third example, aij element’s 
cofactor is calculated by eliminating the ith row and the jth column to create a minor. 
 
Effectively, we “resize” a matrix A by removing one or more of its rows or columns. So, why do we 
need minors? They are used for calculating matrix cofactors, and cofactors are useful for computing 
both the determinant and inverse of a square matrix. Let’s go back to the calculations. 
 
Once we have a series of minors, which is a series of submatrices, we need to calculate the 
determinant for every minor matrix. A series of these determinants will become a new matrix of the 
cofactors. 
 
If we say that a series of minors of a matrix A are called Mij, and cofactors are called Aij, then the 
relationship between the two is: 
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(-1)i+j  Mij = Aij 
 
Sounds complicated, but it isn’t. It is just a bit convoluted. 
 
But how are the cofactors calculated from minors? They are calculated in the same way as the 

determinant. So, for example, if we had a 33 matrix and we wanted to calculate just a few cofactors 
to illustrate the principles, here is what we would do. 
 

For a matrix 𝑨 = (
1 2 3
0 4 5
1 7 6

), to calculate the cofactor A13, we would do the following: 

 
 

𝑨 = (
1 2 3
0 4 5
1 7 6

)   . The minor is (
0 4
1 7

). Now calculate the determinant of |
0 4
1 7

| = (07)-(14) = -4 

 
To calculate the cofactor for A22, for example: 
 
 

𝑨 = (
1 2 3
0 4 5
1 7 6

)     . The minor is (
1 3
1 6

). Now calculate the determinant of |
1 3
1 6

| = (16)-(31) = 3 

 
 
More formally, we say that a cofactor of aij in A is the scalar, whose value is: 
 

cof aij = (-1)i+j det Aij 
 
Or, this can be put differently as: 
 

det 𝐴 = ∑ 𝑎𝑖𝑗 𝑐𝑜𝑓

𝑛

𝑖=1

𝑎𝑖𝑗  

 

You can say that a cofactor of an element in n  n matrix is effectively an (n-1)  (n-1) determinant. 
 
Now we understand the minors and cofactors, we can calculate the inverse of the matrix. The 
conventional procedure is quite convoluted. 
 

Let’s say we have a 33 matrix: 𝑨 = (
1 2 3
0 4 5
1 7 6

) 

 
The normal procedure is: 
 

1. Extract the series of minors and calculate the determinant for every minor matrix: 

𝐴11 = |
4 5
7 6

| = −11     𝐴12 = |
0 5
1 6

| = −5   𝐴13 = |
0 4
1 7

| = −4 

𝐴21 = |
2 3
7 6

| = −9     𝐴22 = |
1 3
1 6

| = 3   𝐴23 = |
1 2
1 7

| = 5 

𝐴31 = |
2 3
4 5

| = −2     𝐴32 = |
1 3
0 5

| = 5   𝐴33 = |
1 2
0 4

| = 4 
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2. Fill the cofactor matrix with the determinant values and change the signs: 

𝑪 = (
−11 −5 −4
−9 3 5
−2 5 4

) × (
+ − +
− + −
+ − +

)=(
−11 5 −4

9 3 −5
−2 −5 4

) 

 
3. Calculate the adjugate (or adjoint) of matrix A, i.e. CT, which is the transpose of the cofactor 

matrix C: 

𝑪𝑇 = (
−11 −9 −2

5 3 −5
−4 −5 4

) 

 
4. Calculate the determinant of the initial matrix A. 

 

 𝑑𝑒𝑡 𝑨 = |
1 2 3
0 4 5
1 7 6

|=[(-1134)+(251)+(307)]-[(341)+(206)+(157) = -13 

 
5. Now multiply the adjugate with the reciprocal of the determinant: 

 

𝑨−1 =
1

det 𝐴
adjoint A =

1

det 𝐴
𝐶𝑇 

 

𝑨−1 =
1

−13
(

−11 −9 −2
5 3 −5

−4 −5 4
) = (

0.85 −0.69 0.15
−0.38 −0.23 0.38
0.31 0.38 −0.31

) 

 
Now you can fully appreciate the power of Excel. The same example calculated in Excel using the 
Excel function =MINVERSE() is almost trivial. Here is the same example, using the same matrix, but in 
Excel: 
 

 
 
As we can see, we do not even have to know what minors and cofactors are, and the result is 
returned. 
 
One advantage of using matrices is that they could be used to solve simultaneous equations. For 
example, a set of simultaneous equations is: 
 

ax + by = p 
cx + dy = q 

 
Let’s assign elements from this system of simultaneous equations into matrices. We get: 
 

𝑴 = (
𝑎 𝑏
𝑐 𝑑

)  𝑵 = (
𝑥
𝑦)  𝑹 = (

𝑝
𝑞) 
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This means that MN = R, or: (
𝑎 𝑏
𝑐 𝑑

) (
𝑥
𝑦)  = (

𝑝
𝑞) 

 

The multiplication rule from above takes us back to the original form:  (
𝑎𝑥 + 𝑏𝑦
𝑐𝑥 + 𝑑𝑦

)  = (
𝑝
𝑞) 

 

If we have MN = R, or: (
𝑎 𝑏
𝑐 𝑑

) (
𝑥
𝑦)  = (

𝑝
𝑞), then we can multiply both side by M-1: 

 
M-1MN = M-1R, this yields IN = M-1R and ultimately N = M-1R. Let’s see an example. 
 

3x + 6y = 21 
2x + 5y = 16   or 
 

(
3 6
2 5

) (
𝑥
𝑦)  = (

21
16

) 

 
Thus  

(
𝑥
𝑦) = (

3 6
2 5

)
−1

(
21
16

)  

 
The determinant of M is: 

det M = |
3 6
2 5

| =35 - 62 = 3 

 
So, the inverse of the matrix is:  
 

(
3 6
2 5

)
−1

=
1

3
(

5 −6
−2 3

)  

 
The solution is found as: 
 

(
𝑥
𝑦) =

1

3
(

5 −6
−2 3

) (
21
16

) =
1

3
(

9
6

) = (
3
2

)  

 
This means that x=3 and y=2. If we insert these values in our equations, we will see that: 
 

3x + 6y = 3  3 + 6  2 = 21 

2x + 5y = 2  3 + 5  2 = 16 
 
As we have discovered, there are a several functions in Excel dedicated to matrices. They all start with 
the prefix M. Here is the list: MDETERM, MINVERSE, MMULT and MUNIT. 
 
They are all located in the Math & Trig group of functions. Some not related functions naturally start 
with the letter M, such as MOD or MROUND, but they are clearly not part of the matrix set of 
functions.  
 
The additional function, that does not start with the letter M, is the function =TRANSPOSE(), which we 
also covered. The only one left uncovered from the above list is =MUNIT(dimension). It just returns 
the unit matrix for a specified dimension. 
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2.14 Eigenvectors, or eigenvalues.  
 

Eigenvalue  is the unique value (a scalar in the jargon of matrix algebra) that ensures that: |A-I|=0. 

In other words, if we multiply the unit matrix elements with this value , and subtract from the matrix 
A, the result must be zero. 
 
Another way to think about eigenvalues is to think about them as the solutions to a set of equations. 
They are often called as characteristic roots or characteristic values, and sometimes also as the latent 
roots. Eigenvalues will form eigenvectors. 
 
Remember what happens when you multiply a matrix with a vector. You get another vector. For 
example, A v = X. We’ll take a look at an example. 
 
Let’s say that we would like to multiply a matrix A with vector v, as below: 
 

𝑨 = (
−1 2
4 6

) ×   𝒗 = (
1
4

)   𝑨𝒗 = (
7

28
) 

 
We already know how to do this. However, look at the result, it can be factored so the result could be: 
 

𝑨𝒗 = 7 (
1
4

) 

 
Here we have a special case where we do not get X, but the same vector v, only this one is scaled. In 

this case: A v = v. We can see that  is a scalar, and it is called an eigenvalue of the matrix A. 
 
All square matrices have eigenvectors and their related eigenvalues. Not necessarily these 
eigenvectors have real numbers, i.e. they can have complex numbers. In these special cases when real 
eigenvectors and eigenvalues exist, it is the same if we multiply eigenvector by the matrix, or if we 
multiply the vector by a scalar. 
 

The general principle is that AX = X. Where, A is a n  n matrix, and X is a vector. For example: 
 

𝑨 = (

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

)  𝑿 = (

𝑥1

𝑥2

⋮
𝑥𝑛

) 

 
 

If we had an eigenvalue , then the corresponding eigenvectors satisfy the relationship: 
 

(

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

) (

𝑥1

𝑥2

⋮
𝑥𝑛

) = 𝜆 (

𝑥1

𝑥2

⋮
𝑥𝑛

) 

 
Which is equivalent to: 
 

(

𝑎11 − 𝜆 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 − 𝜆 … 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛 − 𝜆

) (

𝑥1

𝑥2

⋮
𝑥𝑛

) = (

0
0
⋮
0

) 
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A more compact way to write the above is: (A-I) X = 0, where I is the identity matrix. From there, 

eigenvalues are calculated. For a 22 matrix, for example, the eigenvalues are calculated as: 
 

𝜆± =
1

2
[(𝑎11 + 𝑎11) ± √4𝑎12𝑎21 + (𝑎11 − 𝑎22)2] 

 
As we said, these eigenvalues form an eigenvector. 
 

In general, det |A-I| = 0. This means that the starting point for finding the eigenvector will be the 
matrix A and the identity matrix I. Let’s use a simple example: 
 

|(
4 2
1 3

) − 𝜆 (
1 0
0 1

)| = 0 

 

|(
4 2
1 3

) − (
𝜆 0
0 𝜆

)| = 0 

 

|
4 − 𝜆 2

1 3 − 𝜆
| = 0 

 

𝑑𝑒𝑡 |
4 − 𝜆 2

1 3 − 𝜆
| = (4 − 𝜆)(3 − 𝜆) − (2)(1) = 0 

 

12 - 4 - 3 + 2 – 2 = 0 
 

2 - 7 + 10 = 0 
 

 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
   or    =

7±√(−7)2−4(1)(10)

2(1)
  

 

1 = 5   2 = 2 
 

Using Excel, we might be able to make this process a bit more elegant and faster. Let’s assume that 
we have matrix A in cells A3:C5. The identity matrix I is given in cells E3:G5. 
 

 
 

Cell I2 contains arbitrary number we selected (in this case 100) and it represents . 
 
Cells A8:C10 represent a new matrix that was produced by subtracting from A the matrix I that has 

been multiplied by . This is the part of the equation |A-I| = 0. However, at present this does not 
amount to zero and in cell J3 we inserted the formula =MDTERM(A7:C9), which is the value of the 
determinant of A8:C10 and which we expect to be zero. 
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To calculate the value of , we need to invoke Goal Seek function in Excel. You can find it under the 
Data tab, and then click on What-If Analysis. If you click on this option, a dialogue box will appear as 
below: 
 

  
 

 
 
What we are saying here is that we want cell J3 to be equal to zero and that this can be achieved by 

changing the values of cell I3. In other words, iterate through various values of , until the value of 

|A-I| is zero. 
 

Excel quickly finds the first value of =27.07. See below how the cells changed after the Goal seeking 
operation. 
 

 
 
However, we know that eigenvector must have three eigenvalues, because the matrix A has 3 rows. 

To solve this problem, we used the same example, but appropriately expanded to three values of : 
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We created three  cells I14:I16 as well as three |A-I| cells J14:J16. These cells use three different 
matrices, form A19:C21, A24:C26 and A29:C31. This effectively means that we have to run the Goal 
Seek routine three time, every time seeking the value in a different cell I14:I16. The three values that 

we get are: 1=27.07, 2=1 and 3=0.92. 
 

It makes sense to put the initial value for  as a relatively large number, that is by a magnitude larger 

than any number in the matrix. Once the first value of  is found, we put for the next value of  just a 

little bit smaller number. The third  guess is just below the second optimal value of , which in the 
end gives us all three values of the eigenvector. 
 
A little bit labour intensive, but certainly much quicker than manual calculations. 
 

2.15 Frequency analysis and FFT  
 
A periodic function is the one that repeats itself after a time ‘T’. This is applicable if the function is 
presented in the so-called time space. However, the same function can be presented in a frequency space. 
Here is how to do it. We first define the frequency as: 

T

1
=f  

 
If we do this, the complex relationship between the time and the frequency space can be visualised in a 
three-dimensional graph as below. 
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f 

f(t) 

t 

1/T 

 
 
To approximate such periodic functions we can use Fourier series (not shown here), which is a 
combination of sine and cosine terms. However, unlike the Fourier series, that can handle only periodic 
series, the Fourier transforms can handle any type of series.  
 
If the time series is discrete, which most of the time series in business, economics and finance are, then 
the appropriate Fourier transform to be used is the Discrete Fourier Transform (DFT), which is defined 
by the following equation: 
 

𝐹𝑘 = ∑ 𝑥𝑛 𝑒
−𝑖2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

 
 

 
Where, xn is the input signal, or time series, N is the total n umber of observations in the time series, k 
is a DFT coefficient corresponding to n, n is the number of DFT coefficients and e is Euler’s number or 
the basis of the natural logarithms. 
 
As the above equation contains imaginary number i, it is clear that Fk (or DFTs) will be a series of complex 
numbers. A complex number of the form: z = a + bi, which as we know has a real and imaginary part.  
 

The magnitude of the complex number is calculated as the modulus, which is |𝑧| = √𝑎2 + 𝑏2. This 
means that the magnitude of the complex number is equivalent to the amplitude of the DFT.  
 
Once calculated, the series of DFTs, or Fk, becomes a series of complex number: 
 

𝐹𝑘 = 𝐴𝑘 + 𝑖𝐵𝑘            
 
To calculate the amplitude, or magnitude, for Fk, we effectively need to use the formula for the 
modulus: 
 

𝐺𝑘 = √𝐴𝑘
2 + 𝐵𝑘

2           

 
These amplitudes will show us how much is every frequency present in the time series of observations. 
 
To calculate the coefficients Fk can be extremely time consuming. For this reason, a short-cut method 
called Fast Fourier Transforms (FFT) was invented. Using this FFT method, Excel can also be used to 
calculate the Discrete Fourier Transforms (DFTs) or Fk. 
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Excel Data Analysis Add-in routine for FFT is invoked from the Tools menu, Data Analysis option. 
Once this option has been selected, Data Analysis selection list, as below, appears. What follows is a 
self-explanatory wizard.  
 

 
 
The result of applying this analysis is shown below. Column A contains a time series. The result is 
produced in column C, which is a transformation of column A, but given in a complex plane. These are 
effectively the DFTs, or a series of Fk coefficients. 
 

 
 
We said that Fourier transforms is just another way of representing the same data set. This means that 
we can revert the series of Fourier transforms back into the original time series from which they were 
created. We have done this in column H. The only difference is that in the dialogue box (see below) the 
input range is the Fourier transform series and we have to tick the Inverse box. 
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To illustrate better how to interpret these numbers, let’s look at a graph below showing a typical 
seasonal time series plot: 
 

 
 
The above series is presented in the time domain, which means that every observation is recorded 
chronologically on the ‘x’ axis. If the series, for example, constitutes monthly data, then an 
observation for one month represents 1/12 of the year, although not necessarily a proportional part 
i.e. not all the values for all the months are the same. If we translate the series from a time domain 
into a frequency domain, the same series will look like below. 
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The ‘x’ axis consists of periods and in this case, it is chosen to be logarithmic (as is the y-axis). This 
graphical presentation is called a periodogram. 
 
However, we can change periods into frequencies (see the graph below), which is yet another way of 
representing the same series.  
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Periodogram by frequency 
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The word cycle usually implies that something will go up and down and will repeat itself after a 
period of time. If our time series of length ‘n’ consists of the shortest possible cycle (one up, one 
down observation interchangeably), then the maximum number of cycles for this frequency is n/2. 
This means that the number of cycles can reach maximum for 50% of the number of observations. If, 
on the other hand, the whole series consists of just one cycle, then the frequency is only 1/n. The 
lowest frequency possible has zero cycles, which means there is no cycle at all. Frequencies are, 
therefore, calculated as the number of times the cycle repeats itself in a series over the total number 
of observations. 
 
An alternative way of looking at this is to say that if we have monthly data, then one period 
constitutes 12 months. The frequency of this series is 1/12 cycles per month. This effectively tells us 
what we have already stated, that the frequencies and periods are reciprocals of one another. 
Because the peak in the graph in periodogram shows number 12, this indicates that the periodicity of 
the series is 12 months. On the other hand, the graph in the frequency chart shows the highest 
frequency to be 0.08 (which is in fact 1/12), confirming that these two graphs show one and the 
same thing, just from a different point of view. By the way, looking at other frequencies on the 
frequency graph, we can see that the second highest frequency is period six, which is equivalent to 
0.17 (i.e.1/6) from the periodogram. 
 
If the amplitudes Gk for every DFT coefficient Fk are normalized, then the graph that shows all the 
frequencies against their amplitude (or the power) is called the Power Spectrum. 
 
We will use an example and combine Excel Data Analysis FFT routine to calculate the power 
spectrum for the average annual sunspot number from 1761 until 2016. The sheet below shows the 
first six years and the last seven years of that interval. 
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We happen to have 256 observations (cell B2 shows this) and we will calculate the full 256 DFT 
coefficients (cell B1). In practise, the time series can be any length and it is customary to calculate 2n 
number of DFTs, which is 64, 128, 256, 512, 1024, or any other number of frequencies, depending 
how fine is desired resolution. 
 
The other two cells that need explaining in the sheet above are F1 and F2. F1 contains the folding 
frequency. The power spectrum turns into a mirror image of itself after the folding frequency (see the 
picture below). 
 

 
 
For this reason, it does not make sense to calculate amplitudes beyond the folding frequency. Folding 
frequency ff is calculated as: 
 

𝑓𝑓 =
𝑇

2𝑁
   

 
Where T is the time and N is the number of observations. In our case, the folding frequency in cell F1 
is 0.5. 
 
This folding frequency will also help with calculating the frequency increments fc. The equation is: 
 

𝑓𝑐 =
2𝑓𝑓

𝑇
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In our case the frequency increment is 0.003906, as in cell F2. This means that we will start with 
frequency 0, add to it the first increment, then add to this sum the next, etc. Column E in the above 
sheet shows these frequency increments. We will continue to do this until we reach ff. After that, it 
makes no sense to calculate further coefficients, as we already said. 
 
Column C in the above sheet is produced by using Excel Data Analysis FFT Add-In, as shown before. 
This column consists of complex numbers. From this column, we isolate the amplitudes (or the 
magnitudes for every frequency) in column D. This is achieved using Excel formula 
=2*IMABS(C5)/$B$1. The function =IMABS() produces a modulus of a complex number from column 
C, which has been normalized by the number of coefficients. 
 
And finally, in column E we calculate the power for every frequency as the square value of column D. 
The result is the graph as below. We eliminated from the graph the first frequency (f0), which is 
always disproportionally high, in order to see better the rest of the power spectrum.  
 

 
 
The highest amplitude (or magnitude) is 1706.9 for the frequency of 0.089. If you calculate 1/0.089, 
you get 11.13, which means you are converting the frequencies back into the original time measure. 
As our time series shows annual average sunspots, then 11.12 means that the sunspots show 
periodicity of 11.13 years, which is exactly what astronomers are telling us.  
 

Workbook summary 
 
The objective of this chapter was primarily to provide elementary refresher into some of the most 
often used mathematical techniques that student might need to follow this textbook with confidence 
and without effort.  
 
The secondary objective was to provide a brief introduction and/or a refresher into more advanced 
mathematical concepts. This was achieved by relying on Excel as the key platform to simplify the 
calculations and explain the material in a more concise way. 
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Want to learn more? 
 
The textbook online resource centre contains additional spreadsheet material that accompanies this 
chapter. 
 
 


